

Quantum Sensors and Axion Dark Matter Searches

Wright Lab Quantum Sensing Workshop Quantum Week at Yale

Reina Maruyama Yale University April 8, 2022

Office of Science QuantiSED

QUANTUM INFORMATION SCIENCE AND ENGINEERING NETWORK

Axions are well motivated

J. Ouellet (Wednesday)

2

Axion searches at Yale Haystac + Rydberg extension

Steve Lamoreaux

Reina Maruyama

Sid Cahn

Sumita Ghosh

Xiran Bai

Eleanor Graham

Claire Laffan

James Nikkel

Danielle Speller -> Johns Hopkins

Mike Jewell

Yuqi Zhu

Basic axion detection principle

Haloscope principle: P. Sikivie, Phys. Rev. Lett., 51, 1415 (1983) HAYSTAC detector: Nucl. Instrum. Methods A 854, 11 (2017)

Haystac

Interaction of interest: $\mathcal{L} \supset g_{a\gamma\gamma} a \boldsymbol{E} \cdot \boldsymbol{B}$

- High Q cavity: $Q = \frac{f_c}{\Delta f_c}$
- Low noise amplifier
- Tunable: $hf_a \approx m_a c^2$
- Large magnet: B = 8 T
- Cryogenic: T = 60 mK

HAYSTAC Experiment

Reina Maruyama – Yale

Haystack

5

HAYSTAC results

Reina Maruyama – Yale

Haystac

Backes et al., *Nature*, 590, 238–242 (2021) Zhong et al., Phys. Rev. D 97 092001 (2018) Brubaker et al., Phys. Rev. Lett. 118 061302 (2017) 3.6 4.8 HAYSTAC 2017-2018 2021 15 20

dark matter exclusion enhanced by quantum squeezing sensitive axion search, dipping into KSVZ $> 10 \ \mu eV$

Axions well-motivated @ $m_a > 15 \mu eV$

Buschman, Foster & $25.2 \pm 11 \ \mu eV$ (6.1 ± 2.7 GHz) $17.4 \pm 11 \ \mu eV (4.2 \pm 1.1 \ GHz)^*$ Safdi (2019):

Klaer & Moore (2017); $26.2 \pm 3.4 \mu eV$ ($6.3 \pm 0.8 GHz$)

* In $\Omega_A \sim f_A^{\alpha}$, the best fit $\alpha = 1.24 \pm 0.04$ Rather than analytical 1.187

Single photon detectors

• Single photon detectors have lower noise at higher frequencies Lamoreaux et al., 2013

Rydberg atoms as microwave detectors

- Rydberg atoms:
 - Highly excited valence e^-
 - Couple strongly to 10 1000 GHz
- Applications:
 - Vapor-cell electrometry
 - e.g. Stuttgart; Sediacek et al., 2016
 - Single-atom cavity QED: ENS
 - CARRACK axion search

Basic principle

Reina Maruyama – Yale

CARRACK

Imai, PANIC 2008 Tada, PLA 349 (2006) 488

11

"Tuning" Rydberg atoms

Fine-tuning: Zeeman/Stark

For $m_a = 40 \ \mu eV \approx 10 \ GHz^*$: 101S (and 70S), 95D_{3/2}, and 87C

Rydberg spectroscopy

- **Goal:** identify the $n \sim 50 90$ transitions for 970 nm
- **Detection:** electromagnetically induced transparency (EIT)

ions for 970 nm ced transparency (EIT)

EIT Setup

Reina Maruyama – Yale

data gaussian fit

.....

308.14915

EIT Setup

Reina Maruyama – Yale

n = 47 to 90 identified

- ~80 transitions identified between n = 47 - 90
- 70 of the 80 newly observed Ryd. levels
- Enable access to ~5 50 GHz $(m_a \sim 20 - 200 \ \mu eV)$

YZ, S. Ghosh, S.B. Cahn, M.J. Jewell, D. H. Speller, RHM, arxiv:2112.04614

Conclusions

- HAYSTAC continues to scan 4 10 GHz
- Compelling case for axions at higher masses
- Rydberg atoms give us access to axion @ 10 1000 GHz/40 4000 μeV
- Effort @ Yale focus on 10 50 GHz
- $n \sim 50 90$ Rydberg leves observed
- Stay tuned

