Measuring higher-order phonon statistics in a nanogram-scale superfluid optomechanical system

Jack Harris Department of Physics, Department of Applied Physics, Yale Quantum Institute

Optomechanics: an approach to macroscopic quantum phenomena

Superfluid helium: an excellent material for quantum optics & acoustics
Single-photon detectors: a source of nonlinearity

Measuring quantum signatures: high-order phonon correlations

Next steps: indistinguishable optomechanical devices, tests of Planck-scale physics
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Counting phonons in any optomechanical system
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...but only 1 photon in ~108

applying this idea to optomechanics:
Vanner, Aspelmeyer, Kim (2013)
Painter group (2015)
Groblacher & Aspelmeyer groups (2017 et. seq.)
Polzik group (2020)
Vanner group (2021)



Counting phonons in a nanogram-scale superfluid cavity
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Counting phonons in a nanogram-scale superfluid cavity

Cavity mode volume: 100pum x 10pm x 10pm
(Jakob Reichel’s group, ENS Paris)
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Counting phonons in a nanogram-scale superfluid cavity
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acoustic standing waves: many modes...
...but strictly single-mode coupling!!!
For the optical mode with N, =

A A A

Ny =1 Ny =2 Noe =3 Npe =4 Nac =3 Ny =6

g=0 g=0 g=0 go=3 kHz g=0 g=0

N J
Y

Truly single-mode optomechanical coupling hae = hopt /2 (similar story for transverse modes)




Counting phonons in a nanogram-scale superfluid cavity

Cavity mode volume: 100pum x 10pm x 10pm
(Jakob Reichel’s group, ENS Paris)
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optical standing waves: A = 1550 nm
couples only to A, =775 nm (o, = 315 MHz)

No in situ alignment. Compact, robust to thermal cycling, fiber-coupled, monolithic, scalable, telecom wavelengths

Experimental cell:
- one capillary fill line
- two fibers per device

Multiple devices

- no in situ alignment needed
- scalable to 10% — 103 devices
- devices can be indistinguishable...
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Beam
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Collect only photons that created/annihilated a phonon,
detect with a photon counter:
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filter cavity A
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acoustic mode’s energy distribution
is Gaussian to the 4t cumulant:
very thermal!




Adding a linear drive to the acoustic mode: producing high-amplitude “coherent states”

- Quantum-limited parameter estimation (e.g.: ®,)

- Quantum-limited acoustic interferometry

“detection” laser:
sideband photons are counted
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Adding a linear drive to the acoustic mode: producing high-amplitude “coherent states”
- Quantum-limited acoustic interferometry

- Quantum-limited parameter estimation (e.g.: ®,)

- Tests of spacetime geometry

“detection” laser:
sideband photons are counted
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- Lineshape is constant
- Mean phonon number is
proportional to drive strength
- Acoustic mode is linear
(to > 40,000 phonons)
- Purity of the displaced state?



Adding a linear drive to the acoustic mode: producing high-amplitude “coherent states”
Acoustic mode is linear (to (n;) ~ 40, 000). Purity of the state during driving?
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Acoustic mode is linear (to (n;) ~ 40, 000). Purity of the state during driving?
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Adding a linear drive to the acoustic mode: producing high-amplitude “coherent states”
Acoustic mode is linear (to (n;) ~ 40, 000). Purity of the state during driving?

1005
; Thermal State

Coherent State

10-45_ ,f f ,)_§

Undriven state is thermal ny~1.5 \ | ‘ , 101 0 100 e 102 e 104
confirmed by g, g3, g, etc. 0 50 100 (ng)

T (us) (ng)/ ny
Driveﬂ ?

W(x,p)

/\/ﬁ

<« \/NT

-

Best-case scenario for driven:
thermal state is displaced with
no extra noise
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Acoustic mode is linear (to (n;) ~ 40, 000). Purity of the state during driving?
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Adding a linear drive to the acoustic mode: producing high-amplitude “coherent states”
Acoustic mode is linear (to (n;) ~ 40, 000). Purity of the state during driving?

Undriven state is thermal ny~1.5
confirmed by g(?), gi3), g4 etc.

Driveﬂ ?
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Best-case scenario for driven:
thermal state is displaced with
no extra noise

Beyond-Standard-Model physics
via high-amplitude quantum-limited
motion of a massive object:
o Hard to have a smallest length (pjanck) and Lorentz invariance.
o One solution: non-locality (causal set theory, string theory)
o Belenchia et al. PRL 2016:
* Non-locality has a length scale (# £pjanck) and modifies non-
relativistic dynamics: a driven SHO becomes squeezed.

« Qualitatively: oscillator probes lengths ~,//2mw ~ 107> m
* Driving to large amplitude increases sensitivity by ~/nig
« So, drive an oscillator and look for squeezing: g® (0) > 1
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Conclusions

Superfluid optomechanical devices: Ongoing work:

truly single-mode coupling Next generation of devices:

efficient cooling second-scale phonon lifetime

nanogram scale indistinguishable devices

can count single phonons microgram scale

Measure non-classical phonon statistics in nanogram-scale object

Confirmed Gaussian states (m ~ 1 ng, T~ 20 mK, n ~ 1.5) Improved devices for applications in:

- to 4™ cumulant entanglement distribution over km-scale fiber networks

- in post-selected phonon added/subtracted data quantum communication via DLCZ protocol

- with coherent drive to <n>~ 40,000 tests of discrete spacetime via high-amplitude coherent states

- no sign of fundamental nonlocality at 1018 m searches for dark matter

trapping electron bubbles (ultracoherent spins) in the fiber cavity
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Next steps with new devices: non-Gaussian states & Bell tests

1. Improve acoustic Q: phonon lifetime >> heralding rate 2. Acoustic & optical indistinguishability
] . s for entanglement across arrays via DLCZ
Present device: phonons can leak from LHe into glass: Q = 10 i

10 um \ Laser* i SPD

— “mm?mm“ i

fiber / fiber
Optical DBRs 125 um | 1 A 0 1
(A) Mirrors with acoustic DBRs (B) Ring cavity § § § § §

PZT

o]

M One piezo per cavity to tune length;

\ / . L & detection on SPD heralds W-state
Optical and acoustic

dual-band DBRs

100 pm
"muo?umm

- Entanglement distribution via 1550 nm photons

Acoustic mode confined by total - Over fiber networks
FEM predicted Q = 10 internal reflection; Q = 108 - Long-lived quantum memory (~1 s) at nodes




