

Experimental Nuclear Astrophysics: Lecture 1

Chris Wrede

National Nuclear Physics Summer School

June 19th, 2018

Outline

- Lecture 1: Introduction & charged-particle reactions
- Lecture 2: Neutron-capture reactions
- Lecture 3: What I do (indirect methods)

Today

- Stellar evolution
- Thermonuclear reaction rate formalism
- Measurements of charged-particle reaction rates

Foundations of nuclear astrophysics

REVIEWS OF MODERN PHYSICS

Volume 29, Number 4

Остовек, 1957

Synthesis of the Elements in Stars*

E. MARGARET BURBIDGE, G. R. BURBIDGE, WILLIAM A. FOWLER, AND F. HOYLE

+ Al Cameron

independently in Chalk River internal report

Nuclear reactions in stars are responsible for energy generation and creation of elements

Big Bang nucleosynthesis

Big Bang made 75% H and 25% He, by mass in about 1000s

The Essential Cosmic Perspective, Bennett, Donahue, Schneider, Voit, 7th Ed.

National Science Foundation Michigan State University

How were other elements made?

	-		Key													_	
1 H Hydrogen 1.00794		12 Atomic number Mg Element's symbol Magnesium Element's name 24.305 Atomic mass*													2 He Helium 4.003		
3 Lithium 6.941 11 Na Sodium 22.990	4 Beryllium 9.01218 12 Mg Magnesium 24.305	*Atomic masses are fractions because they represent a weighted average of atomic masses of different isotopes— in proportion to the abundance of each isotope on Earth.								5 B Boron 10.81 13 Al Aluminum 26.98	6 C Carbon 12.011 14 Silicon 28.086	7 N Nitrogen 14.007 15 P Phosphorus 30.974	8 Oxygen 15.999 16 Sulfur 32.06	9 Fluorine 18.988 17 Cl Chlorine 35.453	10 Neon 20.179 18 Ar Argon 39.948		
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
otassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron 55.847	Cobalt	Nickel	Copper 63 546	Zinc 65.39	Gallium	Germanium	Arsenic 74 922	Selenium	Bromine 79 904	Krypton
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Tellurium	ladina	Xe
85.468	87.62	88.9059	91.224	92.91	95.94	(98)	101.07	102.906	106.42	107.868	112.41	114.82	118.71	121.75	127.60	126.905	131.29
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Ti	Pb	Bi	Po	At	Rn
132.91	Barium 137.34		178.49	180.95	183.85	Rhenium 186.207	Usmium 190.2	192.22	195.08	Gold 196.967	200.59	204.383	207.2	208.98	(209)	(210)	(222)
87	88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	-	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	Uuq	Uup	Uuh	Uus	Uuo
(223)	Radium 226.0254		Rutherfordium (263)	(262)	(266)	(267)	Hassium (277)	(268)	(281)	(272)	(285)	(284)	Ununquadium (289)	Ununpentiun (288)	Ununhexium (292)	(294)	(294)
		1	Lanthar	ide Sei	ries					and the second							
			57	58 Co	59 Dr	60 Nd	61 Dm	62 Sm	63	64 Gd	65 Th	66 DV	67 Ho	68 Er	69 Tm	70 Vh	71
			Lanthanum	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
			138.906	140.12	140.908	144.24	(145)	150.36	151.96	157.25	158.925	162.50	164.93	167.26	168.934	173.04	174.967
Actinide Series																	
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
			227.028	232.038	231.036	238.029	237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

National Science Foundation Michigan State University

The Essential Cosmic Perspective, Bennett, Donahue, Schneider, Voit, 7th Ed. C. Wrede, NNPSS, June 2018

In stars and stellar events!

© 2012 Pearson Education, Inc.

Life of a low-mass star (less than about 8 solar masses)

- 1. Protostar: cloud of cold gas collapses under gravity
- 2. Main Sequence: H fuses to He in core
- 3. Red Giant: H fuses to He in shell around He core until He flash
- 4. Helium Core Fusion: He fuses to C in core while H fuses to He in shell
- 5. Double Shell Fusion: H and He both fuse in shells
- 6. Planetary Nebula: outer layers expelled
- 7. White dwarf star left behind

© 2012 Pearson Education, Inc.

The Essential Cosmic Perspective, Bennett, Donahue, Schneider, Voit, 7th Ed.

National Science Foundation Michigan State University

Life of a massive star (more than about 8 solar masses)

- 1. Protostar: cloud of cold gas collapses under gravity
- 2. Main Sequence: H fuses to He in core
- 3. Red Supergiant: H fuses to He in shell around He core
- 4. Helium Core Fusion: He fuses to C in core while H fuses to He in shell
- 5. Multiple Shell Fusion: many elements fuse in shells
- 6. Supernova (type II) explosion after iron core collapses
- 7. Neutron star or black hole left behind

© 2012 Pearson Education, Inc.

National Science Foundation Michigan State University

The Essential Cosmic Perspective, Bennett, Donahue, Schneider, Voit, 7th Ed.

Binary star systems

Half of all stars are in binary systems

Can lead to neutron-star mergers, thermonuclear (Ia) supernovae, classical novae, ...

National Science Foundation Michigan State University

The Milky Way: a cosmic recycling plant

National Science Foundation Michigan State University

The Essential Cosmic Perspective, Bennett, Donahue, Schneider, Voit, 7th Ed.

Synthesis of elements in stars

M. Wiescher / A. Tumino National Science Foundation Michigan State University

Nuclear astrophysics processes

Need stellar nuclear reaction rates to understand nucleosynthesis processes

Stellar reaction rates: thermonuclear

stellar reaction rate

 $\langle \sigma v \rangle = \int \sigma(v) \phi(v) v dv$

need:

a) velocity distribution $\phi(v)$

b) cross section $\sigma(v)$

a) velocity distribution

interacting nuclei in plasma are in thermal equilibrium at temperature T also assume non-degenerate and non-relativistic plasma

⇒ Maxwell-Boltzmann velocity distribution

Stellar reaction rates: thermonuclear

b) cross section

no nuclear theory available to determine reaction cross section a priori

cross section depends sensitively on:

- > the properties of the nuclei involved
- > the reaction mechanism

and can vary by orders of magnitude, depending on the interaction

Reaction	Force	σ (barn)	E _{proj} (MeV)		
¹⁵ N(p,α) ¹² C	strong	0.5	2.0		
${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$	electromagnetic	10 ⁻⁶	2.0		
p(p,e⁺v)d	weak	10 ⁻²⁰	2.0		

1 barn = 10⁻²⁴ cm² = 100 fm²

examples:

Stellar reaction rates: thermonuclear

A. I National Science Foundation Michigan State University

Experimental approach

Measure $\sigma(E)$ as low as possible in energy and extrapolate if necessary

CROSS SECTION $\sigma(E) = \frac{1}{E} \exp(-2\pi\eta) S(E)$

S(E) = E σ (E) exp(2 $\pi\eta$)

National Science Foundation Michigan State University

Direct measurements (stable reactants)

- Accelerator produces ion beam of one reactant at an appropriate energy
- · Beam directed on a chemically stable target composed of other reactant
- Reaction like $A(a,\gamma)B$ or A(a,b)B takes place in target
- Reaction products (usually γ rays or light particles) measured in detector
- Reduce background as much as possible (pure beam, clean target, shielding, ...)

National Science Foundation Michigan State University

Nuclear Physics of Stars, Iliadis, 2nd Ed.

Example: ³He(α , γ)⁷Be reaction

Solar hydrogen burning and neutrinos

National Science Foundation Michigan State University HyperPhysics Nuclear Physics of Stars, Iliadis, 2nd Ed.

Example: ³He(α , γ)⁷Be reaction

Measured at University of Washington's Center for Experimental Nuclear Physics and Astrophysics.

T. A. D. Brown *et al.*, Phys. Rev. C 76, 055801 (2007) National Science Foundation Michigan State University

Example: ³¹P(p,α)²⁸Si reaction

Artist's impression of a thermonuclear explosion on an accreting white dwarf star (classical nova)

Hydrogen burning before explosive temperatures are reached

The ${}^{31}P(p,\alpha){}^{28}Si$ reaction determines if there is a Si-P cycle during (explosive) hydrogen burning on accreting compact stars (rp-process).

phys.org National Science Foundation Nuclear Physics of Stars, Iliadis, 2nd Ed. Michigan State University

Example: ³¹P(p,α)²⁸Si reaction

Measured at the Kellogg facility at Caltech. No strong SiP cycling.

Nuclear Physics of Stars, Iliadis, 2nd Ed. National Science Foundation Iliadis *et al.*, Nucl. Phys. A533, 153 (1991) Michigan State University

SiP cycle?

No strong SiP cycling below about 1 GK

Example: ²²Ne(α,n)²⁵Mg reaction

The ${}^{22}Ne(\alpha,n){}^{25}Mg$ reaction is one of two major sources of neutrons for the slow neutron capture (s) process that produces half of the heavy elements

Nuclear Physics of Stars, Iliadis, 2nd Ed. National Science Foundation astronomynow.com Michigan State University

Example: ²²Ne(α,n)²⁵Mg reaction

Generic setup

Cross section

Measured using similar techniques at many facilities.

Nuclear Physics of Stars, Iliadis, 2nd Ed.

National Science Foundation Michigan State University

²²Ne(α,n)²⁵Mg reaction rate uncertainties

S NSCL Longland *et al.* (2012) National Science Foundation Michigan State University

Background radioactivity

Nuclear Physics of Stars, Iliadis, 2nd Ed. National Science Foundation Michigan State University

Cosmic-ray backgrounds

Passive background shielding

- Use material to block radiation from interacting with the detectors
- High-Z material (eg. Pb) to block gamma rays
- Moderator for neutrons (eg. polyethylene) with component to capture thermal neutrons (¹⁰B, ⁶Li, Cd)
- Large overburden of Earth to block cosmic-ray muons

Active background shielding

μ

- Surround detector with a material (eg. plastic scintillator) that can detect the background radiation
- Use anti-coincidence condition to veto events that were likely from cosmic rays
- Eg. SuNSCREEN at NSCL (left) to veto cosmic-ray muons

National Science Foundation Michigan State University

Rare Isotope beams (RIBs)

- Stars (especially exploding stars) produce radioactive nuclides that undergo reactions
- Can't make a target for p and α induced reactions out of short-lived radioactive nuclides
- Instead, use inverse kinematics: bombard H or He target with RIB
- Need high-quality, high-intensity, low-energy RIB

Example: ²⁶Al(p,γ)²⁷Si reaction

National Science Foundation Michigan State University

RIB production: ISOL technique

ISOL: Isotope Separation On-Line

Nuclear Physics of Stars, Iliadis, 2nd Ed. National Science Foundation Michigan State University

TRIUMF-ISAC in Vancouver, Canada

DRAGON at **TRIUMF-ISAC**

RIB from ISAC facility hits H gas target inducing (p,γ) reaction.

Detect γ -rays at target position.

Separate reaction products from beam with electromagnetic separator.

Detect reaction products at the end of the separator.

National Science Foundation Michigan State University

Example: ²⁶Al(p,γ)²⁷Si with DRAGON

Energy of recoils combined with time-of-flight through separator used to distinguish reaction products from "leaky" beam at $E_{cm} = 0.184$ MeV

National Science Foundation Michigan State University

C. Ruiz et al., Phys Rev. Lett. 96, 252501 (2006)

RIBs from nuclear fragmentation at NSCL

Accelerate heavy ion beam with cyclotrons and bombard thin, light, target. Reaction products fly forward, are separated in flight, and delivered to experiments directly (fast beam), thermalized (stopped beam), or reaccelerated (ISOL-like beam)

RIBs from FRIB

RIB production: fragmentation (FRIB)

Scientific Reach of FRIB – Rare Isotope Beam Rates

FRIB will deliver 1000x the rare isotope quantities as NSCL by ~2025

National Science Foundation Michigan State University

FRIB

Civil construction complete

Technical construction well underway for completion in 2022 (possibly 2021)

National Science Foundation Michigan State University

SECAR at NSCL/FRIB

fribastro.org National Science Foundation Michigan State University

SECAR at NSCL/FRIB

SECAR Installation Underway at ReA3

The Separator for Capture Reactions (SECAR) is currently being installed in the ReA3 hall at NSCL. Once complete, SECAR will begin its physics program of capture reaction studies for nuclear astrophysics.

fribusers.org National Science Foundation Michigan State University

Thank you for your attention!

