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Outline

● Motivation:  Project 8 experiment.

● Why do we need a new simulation?  Compare Locust with existing 
particle physics simulation packages.

● Purpose of the simulation

– Generate the same data that we should see from the real 
experiment.

– This allows us to test the feasibility and systematics of the real 
experiment.

● Logistics and examples.

– Generating and processing a signal.

– Running the simulation on HPC.

● This pdf sits online at 
https://github.com/project8/locust_mc/blob/develop/Config/NNPSSTutorial/NNPSSTutorial.pdf
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Neutrinos in radioactive decay

● Neutrino first postulated 
in 1930 by Wolfgang 
Pauli to preserve energy 
conservation in 
radioactive decays.

● Integral part of Fermi's 
theory of beta decay in 
1933, precursor to 
theory of the weak 
interaction.

● Neutrinos first detected 
in 1956 by Reines and 
Cowan.

Wolfgang Pauli
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Constraints on effective masses

F. Capozzi et al., Nucl. Phys. B, 00 (2016)  

Constraints on 
masses from 
cosmology and from 
direct measurements 
can be compared.
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 T2 beta decay

e.g., L. I. Bodine, Ph.D. Thesis, University of Washington (2015)
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Direct measurements of effective 
neutrino mass

● Electron capture from 163Ho
– Holmes, Echo, NuMecs

● T2 beta decay

– Mainz/Troitsk

– KATRIN:  Karlsruhe Tritium Neutrino Experiment

– Project 8
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Decay of 163Ho by electron capture

● Proposed in 1982 by 
DeRejula and Luisignoli. 

● 163Ho decays to 163Dy by 
EC.  De-excitation emission 
is measured by xray 
calorimetry.  

● Holmes, ECHo, NuMECS 
experiments.

● Measurement of distortion 
of EC xray spectrum at end 
point due to m.

● Resolution is presently 
defined by xray calorimetry 
and atomic calculations. 
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KATRIN
Diameter of spectrometer is 10 m.

Required vacuum is 10-11 mbar.
Projected sensitivity is m < 0.2 eV.
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Project 8:  Cyclotron Radiation Emission 
Spectroscopy (CRES)*

Pioneered by the Project 8 collaboration in 2015.  Measure 
energy of single electrons indirectly by detecting boosted 
cyclotron frequency:

Emitted power depends on pitch angle  
but cyclotron frequency does not.
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*B. Monreal and J. Formaggio, Phys. Rev. D80 051301 (2009) 
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Cyclotron Radiation Emission Spectroscopy (CRES)

B. Monreal and J. Formaggio, Phys. Rev. D80 051301 (2009) 
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● Trap electrons emitted from a radioactive source gas in a 1 T 
magnetic field and collect the cyclotron emission.

● Voltages induced in the antennas are filtered and digitized.  
● Time of measurement determines frequency resolution.
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Heterodyne detection

f1+f2

f1-f2

f1

f2
intermediate 
frequency

“Never measure 
anything but 
frequency.”

Dr. Arthur Schawlow 

● Voltages are sampled in time 
after mixing down from 26 
GHz to tens of MHz.

● Frequency spectrum is 
calculated by FFT.

● 18 keV electrons in 1 T gives 
SNR of ~10 in waveguide.  
Frequency resolution = 1/.
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Project 8 Phase 1 prototype schematic

D. M. Asner et al., PRL 114, 162501 (2015)
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How can we simulate the 
RF signal generation?
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Status of existing particle physics 
simulation software packages

● Geant4:  Particle tracking and kinematics

● Comsol and HFSS:  EM field solutions

● Kassiopeia:  Flexible, modular in-situ field solutions with 
simultaneous particle trajectory calculations (Furse et al., 
NJoP 2017).

● Locust:  New simulation interface with Kassiopeia to model 
RF signal generation from particle trajectories, developed 
for Project 8.
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Trajectory calculations in EM field solutions with 
Kassiopeia simulation

Trajectories of five 18 keV 
electrons, four trapped in 
a magnetic bottle.  Field 
lines not shown.  Range 
of initial (x0,y0,z0).

Magnetic bottle created by 
pinch coils in a constant 
magnetic background 
field.

Simultaneous field 
solutions and 
trajectory calculations.
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Locust simulation software block diagram

LMCSimulationController

LMCRunLengthCalculator

LMCSignal (initial)

LMCGenerator 1

LMCGenerator 2

LMCGenerator 3

LMCGenerator N

LMCSignal (final)

LMCEggWriter

disk

Generators populate 
and modify the 
LMCSignal object.

Configuration parameters 
are read from the json file.

Final LMCSignal object is 
a time series of voltages 
to be written to file.
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How do the Kassiopeia and Locust 
simulations interact?

● They are compiled into one executable.

● Only one of them runs at a time, while the other locks 
control of a std::mutex object.

● Kassiopeia runs for e.g. 0.5 ns at a time, then unlocks the 
mutex.  Locust takes control of the mutex, calculates one 
voltage, and then hands control of the mutex back to 
Kassiopeia.
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Sample 
at 
2 GHz

LO

RF 

LPF

IF = RF – LO
IF = RF + LO excluded.
( image allowed at -IF )

Decimate 
sampling 
frequency by 
10

Add 
Gaussian 
noise

Locust simulation example 
RF block diagram

Kassiopeia disk

● Use the energy losses reported by Kassiopeia to guide 
input.

● Generate antenna voltages at RF sampling frequency.  
Mix down to baseband with algorithmic receiver. 

LMCKassSignal
Generator

LMCLowPassFilterFFT
Generator

LMCDecimateSignal
Generator

LMCGaussianNoise
Generator
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Why do we need the RF receiver 
block diagram in the simulation?

● Lab experiment has an RF receiver.  The main purpose is to lower the 
signal frequency from e.g. GHz to MHz for efficient sampling and data 
management.

● Signal generated with Locust should have the same format as the 
empirical data.  This provides a comparison for lab data analysis. 

● Signal post-processing needs a signal as input.  Signal properties 
constrain information that can be derived from signal processing.
– e.g. Information that might be in the signal:  voltage amplitude, voltage phase.  

– Information that might not be in the signal:  large bit depth for higher accuracy, 
phase continuity, missing energy.

– Signal properties (or missing properties) can help tell us whether the 
experiment will work (or not).
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List of examples in this tutorial

● Visual Tool Kit (VTK) output.

● Single electron in a waveguide with one antenna.

● Driving the simulation with a tunable test signal.

● Larger number of single electrons in a waveguide, run 
in parallel on hpc.

● Single electron in an array of multiple antennas.

● Checking the magnetic field map.
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Steps to get started

● ssh -Y netID@grace.hpc.yale.edu

● module load Tools/nnpss

● setup_dirs.sh

● cd project8/manageTutorial

● cp /home/hep/baker/ps48/project8/manageTutorial/* .

● cp /home/hep/baker/ps48/locust_mc/Config/NNPSSTutorial/* 
~/locust_mc/Config/NNPSSTutorial/

mailto:netID@grace.hpc.yale.edu
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Example 0:  Look at VTK output of a 
trajectory calculation with Kassiopeia

1)  ssh to Grace cluster:  ssh -Y  netID@grace1.hpc.yale.edu .

2)   Log in to compute node:  srun --x11  --pty -c 4 -p interactive bash  

3)   LocustSim config = 
~/locust_mc/Config/NNPSSTutorial/LocustTutorialTemplate.json

4)  Output should appear as on next slide if:

•   Kassiopeia has been compiled with VTK.
•   The vtk window has been instantiated in the xml file.
•   OpenGL version on your laptop is compatible with that on the cluster.
•   Otherwise this example is more suitable to run on a standalone 

laptop.

mailto:netID@grace1.hpc.yale.edu
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Example 0:  Look at VTK output of a 
trajectory calculation with Kassiopeia, cont.
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Logistics and examples of simulated 
RF signal generation
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Questions before and after Locust

● Questions to ask before running Locust:
– How much of the physics should appear in the generated signal?

– Is there other physics that will not appear in the generated 
signal?

– How will we tell the difference?

● Questions to ask after running Locust:
– Did we measure the physics that we needed?

– If not, how should we change the detection hardware?  Describe 
the hardware change algorithmically in Locust, and generate a 
new signal. 
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Some more detailed questions 
before/after running Locust

● Did we detect the signal?  
– Is the local oscillator tuned to put the signal in our baseband window 

spanning from -fNyquist to +fNyquist?

– An easy way to check this is to interrupt the simulation and print the RF 
frequency to the terminal.  IF = RF – LO.

– Otherwise check the processed data to look for the signal.

● Was the digitizer range set correctly?
– Locust prints ~100 digital voltages at completion.

– Look for values of 0 and 255.  These indicate saturation.

– Too many 127 and 128s mean too much range.

– Adjust the digitizer range in the json file “digitizer” parameters.

● What is the digitizer bit depth?
– It is hard-wired to 8 bits at the moment.

f1+f2

f1-f2

f1

f2
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What are we actually going to do?

● Generate a time series of complex voltages (LMCSignal object).

● Each voltage sample will have a real part (I) and an imaginary 
part (Q).

● First we calculate the voltage I sampled at time t with phase 
(t), and then we derive Q from it by lagging the voltage phase 
90o.

● In the offline data stream we will have the voltage magnitude 
and phase information.  =atan(Q/I).


I

Q

mag
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Locust example 1:  Magnetically trapped electron 
radiates in a waveguide with one antenna

● What is the signal?
– Power radiated by the electron.

● How will we detect it?
– Generate voltages on an antenna by, e.g., P = V2/R.

● What is the voltage amplitude V?  
– Consider the power in the waveguide mode(s) that propagate to the antenna. 

– V = sqrt(50 P), if it is changing with time we have AM.

● What is the voltage phase ?

– Require  to advance continuously as (t) += f'(dt); it changes as FM.

– f' is the frequency observed right at the antenna, including Doppler shift.

● What physics is not in the signal?
– Waveguide modes that do not propagate.

– Frequency of radiation observed anywhere but at the antenna.

– We might reconstruct the missing physics with post-simulation analysis.   
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Locust example 1:  Magnetically trapped electron 
radiates in a waveguide with one antenna, cont.

● How do we implement this in software?
– Inside the Locust generator LMCKassSignalGenerator we have 

populated the LMCSignal object with a time series of complex voltages.
● VI(t) = V0(t)cos((t)); VQ(t) = V0(t)sin((t))

● V0(t) and (t) are calculated as on previous slide.

● Sampling rate is chosen according to bandwidth needs.

● How do we run this on Yale HPC?
– cd ~/project8/manageTutorial

– emacs SimulateSeed &, note 4 cpus, output file.

– ./SimulateSeed

– Wait 30 minutes.  Check that the file locust_jobSeed55 is growing.
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Locust example 1:  Magnetically trapped electron 
radiates in a waveguide with one antenna, cont.

● Check to see whether the slurm job has finished, and that there is an 
egg file in ~/data/SimulationTutorial.
– squeue -u netID

– ls -l ~/data/Simulation/Tutorial/*.egg
● Log on to a compute node:  srun --x11  --pty -c 4 -p interactive bash  

● cd ~/project8/manageTutorial

– ./ProcessOneSpectrogram

– root -l

– .L PlotExample()

– PlotTrack() 

– PlotStartFreqs() 

– PlotSlopes()

output
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Locust example 2:  Drive the receiver 
with a complex sine wave

● Log on to a compute node:  srun --x11 --pty -c 4 -p interactive bash

● Open the sine wave config file:  emacs 
~/locust_mc/Config/NNPSSTutorial/LocustSineWave.json &.  Check which generators 
are listed, see that “lo-frequency” = 20.15 GHz.

● Open the sine wave generator:  emacs 
/home/hep/baker/ps48/locust_mc/Source/Generators/LMCTestSignalGenerator.cc , 
scroll to DoGenerateTime().  Find test_frequency = 20.1e9 Hz.

● LocustSim config=~/locust_mc/Config/NNPSSTutorial/LocustSineWave.json

● Katydid -c ~/locust_mc/Config/NNPSSTutorial/katydid_basic.json

● cd ~/project8/manageTutorial

– root -l

– .L PlotExample.c

– PlotTestSignal()

output

Peak PSD is 0.1e-18 W/Hz
Frequency is 50 MHz.
DC == 100 MHz.
(We have mixed the RF 
frequency to -50 MHz.)
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Locust example 2:  Check the frequency and 
normalization of the complex sine wave 

– Open the generator:  emacs 
/home/hep/baker/ps48/locust_mc/Source/Generators/LMCTestSignalGenerator.cc &

– Scroll to DoGenerateTime() function and look at this line:  aSignal-
>LongSignalTimeComplex()[ch*aSignal->TimeSize()*aSignal->DecimationFactor() + 
index][0] += sqrt(50.)*5.e-8*cos(voltage_phase-LO_phase);

– We are modifying the (multichannel, complex, oversampled, in-phase) LMCSignal 
object by adding a voltage to it.  The antenna impedance is 50, the voltage amplitude 
is 5.e-8 volts, and the frequency after downmixing will be (test_frequency-
fLO_frequency).

– Power in the sine wave should be V2/R =  (5.e-8)(5.e-8)/50. = 2.5e-15/50. W.  Checking 
the PSD histogram we see PSD = 0.1e-18 W/Hz with a bin width of 200.e6/8192, for a 
total power of 2.44e-15 W.  The 50 has been applied in Katydid post-processing.

– Signal frequency is 50 MHz, which in this post-processing configuration, is 50 MHz 
below DC.  The frequency span shown corresponds to -100 MHz through 100 MHz.

LO

LPF disksine wave decimatesample

generator generator generator
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Locust example 2:  Try tuning the LO (complex 
sine wave, continued)

● emacs ~/locust_mc/Config/NNPSSTutorial/LocustSineWave.json

– Look at the config parameters in the “test-signal” generator.  Decrease 
the “lo-frequency” by 60 MHz from 25.15e9 to 25.09e9 Hz.

– Save the file.
● LocustSim 

config=~/locust_mc/Config/NNPSSTutorial/LocustSineWave.json

● Katydid -c ~/locust_mc/Config/NNPSSTutorial/katydid_basic.json

● cd ~/project8/manageTutorial

– root -l

– .L PlotExample.c

– PlotTestSignal()

Detected frequency 
has increased by 
60 MHz.
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Locust example 2:  Now tune the signal all the 
way out of the window (sine wave, continued)

● emacs ~/locust_mc/Config/NNPSSTutorial/LocustSineWave.json

– Look at the config parameters in the “test-signal” generator.  Decrease 
the “lo-frequency” by another 100 MHz from 20.09e9 to 19.99e9 Hz.

● LocustSim 
config=~/locust_mc/Config/NNPSSTutorial/LocustSineWave.json

● Katydid -c ~/locust_mc/Config/NNPSS/katydid_basic.json

● cd ~/project8/manageTutorial

– root -l

– .L PlotExample.c

– PlotTestSignal()

LO

LPF diskdecimatesample

These filters have suppressed the 
signal power because its frequency 
has been tuned out of the 
baseband window.
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About the filtering (1)

LO

LPF diskdecimate
Sample
fast

LO

LPF diskSample 
normally

Why 
this?

And not 
this?



  

About the filtering (2)

Using a test signal with a low (1/2) and 
high frequency (8/2) component 
V(t) = cos(t) + cos(8t) we can see what 
happens to the high-f signal for fs=1 Hz.

f=0.16 Hz

Frequency aliasing:  This 
peak corresponds to the 
signal with f = 1.27 Hz but 
sits at ~0.3 Hz because 
fs=1 Hz is too slow.

fs=1 Hz



  

About the filtering (3)

Sampling faster:  Now the 
signal with f=(8/2)=1.27 Hz is 
measured correctly and can 
be suppressed with a LPF in 
the frequency domain at 0.5 
Hz.

suppressed



  

Return to Example 1 to process 
signal and plot results
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Locust example 3:  Generating more statistics
● cd ~/project8/manageTutorial/  

● emacs SimulateSeed &

● Look at the range of seeds to be submitted as slurm jobs.  Pick 56 
through 62.  Exit and submit the job:  ./SimulateSeed

● It has to run for 3 hours, but we can process some pre-existing data:  
sbatch ProcessEggFilesBatch, then

– root -l

– .L PlotSpectrum.c

– PlotKrypton()

Each point represents one 
processed track in 
frequency-time space.
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Locust example 4:  Magnetically trapped electron 
radiates in free space with 30 channels

Patch array radius 
5.16 cm.  

Spacing 0.0108 m. 

One amplifier per longitudinal 
strip for phased summing in 
time domain.  
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Locust example 4:  Multiple receiver channels

● Check the Locust config file:  
– emacs ~/locust_mc/Config/NNPSSTutorial/LocustPhase3Template.json

– Find the “simulation” config parameters, where “n-channels” is set to 30.

– Check which generators will be called:  “patch-signal”, “lpf-fft”, “decimate-
signal”, “digitizer”.

● Check the slurm bash script:  
– emacs ~/project8/manageTutorial/SimulateMultichannel

– Notice we request 12 cpus, which is more than for the single channel 
simulation.

– Note ntask=1 still, even with multiple threads and channels. 
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Locust example 4:  Magnetically trapped electron 
radiates in free space with 30 antennas

● Run the simulation:  

– cd ~/project8/manageTutorial

– ./SimulateMultichannel

– squeue -u netID

– ~3 hours later it will finish.

● Process pre-existing data

– ./ProcessMultichannelEggFiles

– root -l 

– .L ChannelSumming.c

– beamform() Reconstructed electron position 
from phase-sensitive sum

Simulation development by P. Slocum, N. Buzinsky, N. Oblath, T. Wendler 
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Locust example 5:  Check the magnetic field map  
● Kassiopeia contains a trajectory gen_bfieldlines for a charged 

particle moving along a selected field line.
● This is implemented in Project8Tutorial_FieldMap_Template.xml, 

called by Locust_FieldMap.json
– cd ~/project8/manageTutorial

– srun --x11  --pty -c 4 -p interactive bash  

– LocustSim config=~/locust_mc/Config/NNPSSTutorial/LocustFieldMap.json

● Plot the field map:
– root -l 

– .L PlotFieldMap.c

– fieldmap()
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Tutorial and scripts in repositories on Github

● Simulation
–  https://github.com/project8/locust_mc.git

– Configuration files are in the same directory referenced in this 
tutorial:  ~/locust_mc/Config/NNPSSTutorial/ .

● Interpretation scripts
– https://github.com/project8/scripts.git

– Files in repository directory ~/scripts/NNPSSTutorial/ are the 
same as those used in this tutorial, in the directory 
~/project8/manageTutorial/ .

https://github.com/project8/locust_mc.git
https://github.com/project8/scripts.git
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Summary

● RF signal generation can be simulated with the Locust 
simulation.

– A time series of induced voltages can be calculated one 
sample at a time.

– AM and FM modulation can be applied to the voltages.
● Processing the generated signal tells us what information we 

have detected about an experiment.

– It's important to know which information we have not detected.

– It's important to know whether (or not) we can reconstruct any 
missing information from the signal analysis.


