Heavy Ion Experimental 1 Introduction to the Experiments Bulk Properties of the QGP

Megan Connors NNPSS

June 22, 2018

The Big Bang & Quark-Gluon Plasma

Phase diagram of nuclear matter

Quark Gluon Plasma – a *liquid* of quarks and gluons created at temperatures above ~170 MeV ($2 \cdot 10^{\circ}$ K) – over a million times hotter than the core of the sun or ~15 billion times hotter than a cup of coffee!

How do we get there?

Compress and heat normal nuclear matter

QGP Making Machines

RHIC

LHC

Long Island, NY 1.2 km diameter Versatile machine colliding a variety of species over 7-500 GeV pp, dAu, AuAu at Vs_{NN} = 200 GeV

Se North Read And States No North Alantic Ocean North Alantic Ocean North Alantic Ocean North Maximum Az Max Az Ma

Geneva, Switzerland 8.6km diameter Highest energies = higher temperature and access to rare probes pp, PbPb at $Vs_{NN} = 2.76$ pPb at $Vs_{NN} = 5.02$ TeV

Comparison of colliders

	RHIC	LHC	
\sqrt{s}_{NN} (GeV)	7-200	2760, 5500	center of mass energy
$dN_{ch}/d\eta$	~1200	~1600	number of particles
T/T c	1.9	3.0-4.2	temperature
ε (GeV/fm)	5	12, 16	energy density
$ au_{QGP}$ (fm/c)	2-4	>10	lifetime of QGP

QCD at high Temperatures What to expect when we get there?

F. Karsch, et al Nucl. Phys. B605 (2001) 579

T_c = Critical temperature

Lattice QCD indicates that at a temperature > T_c we have **partonic degrees of freedom** (Deconfinement) rather than hadronic

Hot Dense Quark Gluon Plasma

170 MeV → 2•10¹²K 100,000 times hotter than the sun's core!

Evolution of the Collision

Trigger detectors: When do we have a collision? Tracking detectors: Where and how fast did the particle go? Identification detectors: What kind of particle is it? Calorimeters: How much energy does the particle have?

Recall our favorite variables

$$\eta = -\ln[\tan(\theta/2)]$$

$$p_T = \sqrt{p_x * p_x + p_y * p_y}$$

Evolution of the Collision

Incoming Nuclei

QGP Hydrodynamic expansion

Freeze-out

- 2 classes of observables
 - Hard probes (jets, high p_T hadrons, heavy flavor)
 - Bulk measurements (elliptic flow)

Hard = high momentum

How do you know you created a QGP?

hard scatterings occur

Measure this

- Bulk medium properties
- Interaction of hard probes with the medium
 - Yield should scale according to number of these binary collisions: N_{coll}
 Yield in Au + Au Events

$$R_{AA} = \frac{\text{Yreld in Au + Au Events}}{(\text{Ncoll})(\text{Yield in } p + p \text{ Events})}$$

RHIC's First Two Major Discoveries

- Discovery of "elliptic flow":
 - Elliptic flow in Au+Au collisions at √s_{NN}= 130 GeV, STAR Collaboration, <u>Phys.Rev.Lett.86:402-407,2001</u>

$$\frac{1}{N_{\rm trig}}\frac{dN^{\rm pair}}{d\Delta\phi}\sim 1+2\sum_{n=1}^{n=\infty}V_{n\Delta}(p_T^{\rm trig},p_T^{\rm assoc})\cos(n\Delta\phi)$$

- Discovery of "jet quenching"
 - Suppression of hadrons with large transverse momentum in central Au+Au collisions at Vs_{NN} = 130 GeV, PHENIX Collaboration, <u>Phys.Rev.Lett.88:022301,2002</u>

How do you know you created a QGP?

• What is flowing?

 Is p+p the right baseline? How does a nucleus influence change the initial state?

 Is N_{coll} correct description correct in R_{AA} calculation?

What is flowing?

"Fine structure" 0.1 π (PHENIX)
 φ (PHENIX) Hydro from P. Huovinen et al., **K** (PHENIX) $\circ \Lambda$ (STAR) Phys. Lett. B503, 58 (2001) in elliptic flow: \star K⁰_s (STAR) \Box Ξ (STAR) Phys. Rev. Lett. 98, 162301 (2007) Elliptic flow of identified hadrons u⁵0.05 in Au+Au collisions at Vs_{NN} = 200 GeV, PHENIX Collaboration, Phys.Rev.Lett.91:182301,2003 0 **PH**^{*}ENIX < < **Hydro Model Results** 0.2 pbar 0.5 1.5 0.2 0 $v_2(p_T)$ $(m_{T} - m_{0})/n_{q} (GeV)$ $\Xi^{2} + \overline{\Xi}$ $\Omega^{-} + \overline{\Omega}$ 0.1 0.1 hydro π STAR preliminary hvdro K 200 GeV Au+Au min. bias (0-80%) hydro p 3 1.5 2.5 0.5 p_T (Gev/c) p_T (GeV/c)

We have a liquid of quarks and gluons!

Direct Photons as a Cross Check

Direct photons do not interact via the strong force and therefore are not modified by the QGP

Quantifying Cold Nuclear Matter Effects

- Suppression in Au+Au not observed in d+Au
- Au+Au "Disappearance of the awayside jet" not in d+Au

How do you know you created a QGP?

- But what is flowing?
 - Quarks!
- Is p+p the right baseline? How does a nucleus influence change the initial state?
 d+Au consistent with p+p measurements
- Is N_{coll} correct description correct in R_{AA} calculation?
 - Direct photon R_{AA} is 1 as expected for non-interacting probe

How do you know you created a QGP?

• The RHIC White Papers summarizing first 3 years of data:

- Quark gluon plasma and color glass condensate at RHIC? The Perspective from the BRAHMS experiment, Nucl.Phys. A757 (2005) 1-27, <u>nucl-ex/0410020</u>
- Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration, Nucl.Phys. A757 (2005) 184-283, <u>nucl-ex/0410003</u>
- The PHOBOS perspective on discoveries at RHIC, Nucl.Phys. A757 (2005) 28-101, <u>nucl-ex/0410022</u>
- Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration's critical assessment of the evidence from RHIC collisions, Nucl.Phys. A757 (2005) 102-183, <u>nucl-ex/0501009</u>
- The conclusion was YES! collectively these results indicate a new state matter of known as the QGP

Bulk properties

- Temperature
- Energy density
- Flow
- Viscosity
- Source size

Event Categorization Review

- Centrality relates to impact parameter (b) or amount of overlap
- % refers to total section
- Pop Quiz:
 - Draw 0-10% and 60-90%

Bulk Properties: Temperature

Thermal Photons

Measure direct photons Observe excess above QCD processes Excess = themal photon contribution Extract temperature from fits

Flow revisited

Initial overlap asymmetric \rightarrow pressure gradients Momentum anisotropy \rightarrow Fourier decomposition:

 $\frac{d^2 N}{dp_T d\phi} \approx 1 + 2v_1 \cos(d\phi) + 2v_2 \cos(2d\phi) + 2v_3 \cos(3d\phi) + 2v_4 \cos(4d\phi) + 2v_5 \cos(5d\phi) + \dots$

Also observed by the LHC

ALI-PREL-2457

What does this say about viscosity?

• Same phenomena observed in gases of strongly interacting atoms -K, O'Hara, S. Hemmer, M. Gehm, S. Granade, J. Thomas Science 298 2179 (2002)

Low Viscosity

Same phenomena observed in gases of strongly interacting atoms

Fluctuations in the geometry of initial state give rise to odd harmonics

Fourier decomposition: $\frac{d^2 N}{dp_T d\varphi} \approx 1 + 2v_1 \cos(d\varphi) + 2v_2 \cos(2d\varphi) + 2v_3 \cos(3d\varphi) + 2v_4 \cos(4d\varphi) + 2v_5 \cos(5d\varphi) + \dots$

Higher Order Harmonics

The Quark Gluon Plasma has a very low viscosity

Implications for viscosity

Phys.Rev.Lett. 98 (2007) 172301 e-Print: nucl-ex/0611018 Charm quarks — Energy loss

and

– Flow

 v_2 is similar to that from [31], again implying that small τ and/or $D_{HQ} \times (2\pi T)$ are required to reproduce the data. Note that D_{HQ} provides an upper bound for the bulk matter's diffusion coefficient D. Using the observation [32] that $D \approx 6 \times \eta/(\epsilon + p)$ with $\epsilon + p = Ts$ at $\mu_B = 0$ provides an estimate for the viscosity to entropy ratio $\eta/s \approx (\frac{4}{3} - 2)/4\pi$, intriguingly close to the conjectured quantum lower bound $1/4\pi$ [33]. This result is consistent with estimates obtained in the light quark sector from elliptic flow [34] and fluctuation analyses [35].

What do we learn about the QGP?

Hydrodynamics works \rightarrow -(local) thermalization -image of the initial state Really low viscosity -Near AdS/CFT bound - η /S ~ 1/4 π

The QGP is the perfect liquid!

(not the gas of "free" quarks and gluons we expected)

Vorticity

New discoveries: 'Perfect Liquid' Quark-Gluon
 Plasma is the Most Vortical Fluid

Surprises in p+Pb

0-20%

60-100%

- $2 < p_{_{T,trig}} < 4 \text{ GeV}/c$ $2 < p_{_{T,trig}} < 4 \text{ GeV}/c$ $2 < p_{_{T,trig}} < 4 \text{ GeV}/c$ p-Pb √s_{NN} = 5.02 TeV p-Pb √s_{NN} = 5.02 TeV p-Pb √s_{NN} = 5.02 TeV 1 < p_{T,assoc} < 2 GeV/c 1 < p_{T,assoc} < 2 GeV/c 1 < p_{T,assoc} < 2 GeV/c (0-20%) - (60-100%) 0-20% 60-100% $\frac{\sqrt{\frac{1}{100}}}{\sqrt{\frac{1}{100}}}\frac{d^2N_{assoc}}{d\Delta\eta d\Delta\phi} (rad^4)$ $rac{1}{N_{trig}}rac{d^2N_{assoc}}{d\Delta\eta d\Delta\phi}$ (rad⁻¹) 0.82 N^{trig} d∆nd∆φ (rad¹) 0.22 0.6-0.85 0.4 1.0 0.2 2 2 $\frac{1}{\Delta \varphi} \frac{2}{(rad)}$ $\frac{1}{\Delta \varphi} \frac{2}{(rad)}$ Megan Connors ふ ò Ó -1 -2 -1 -2 ALI-PUB-46228 ALI-PUB-46224 ALI-PUB-46246
- Double Ridge

What does that imply?

Geometry Scan at RHIC

Take home messages

- Heavy Ion colliders allow us to study QCD under extreme conditions
- The QGP flows like a nearly perfect liquid of quarks and gluons
 - Described with Hydrodynamics
 - Low viscosity
 - Vortical
- Geometric fluctuations in the initial state are observed as higher order harmonics
- Evidence for QGP flow behavior observed in small systems
- Beam Energy Scan II at STAR will give insight to the critical point and QCD phase diagram