

Nuclear Structure Experiments I

Advancing Knowledge. Transforming Lives.

Thursday before lunch

Preliminaries Nuclear existence

Masses

Ground-state half-lives

Many observables need to be measured to tackle the challenges outlined in previous presentation

Advancing Knowledge. Transforming Lives.

Preliminaries (1)

Advancing Knowledge. Transforming Lives.

Goal: Establish physical properties of rare isotopes and their interactions to gain predictive power

Experiments: Measure observables

Observables: May or may not need interpretation to relate to physical properties

- e.g., half-life and mass connect directly to physical properties
- e.g., cross sections for reaction processes usually need interpretation to connect to physical properties (model dependencies are introduced)

Preliminaries (2)

Transforming Lives.

Theories and models can relate observables to physical properties – often, experiments are motivated by theoretical predictions that need validation

But: Theories and models have their own realm of applicability that everybody involved in the experiment/data analysis/interpretation should be aware of!

Predictions or systematics come with a warning: Might lead to expectations that can influence the implementation of an experiment and ultimately limit the scope of discovery

Preliminaries (3)

Advancing Knowledge. Transforming Lives.

Nuclear physics experiments are complex and experiments with rare isotopes pose additional challenges

- Rare isotopes are typically available for experiment as beams of ions
- Many of the established and well-tested techniques are not applicable and new approaches have to be developed

Production of exotic nuclei

Advancing Knowledg

Random removal of protons and neutrons from heavy projectile in peripheral collisions

- Transfer reactions
- •Fusion-evaporation
- •Fission
- •Fragmentation

Target fragmentation (TRIUMF, ISOLDE, SPIRAL, HRIBF)

projectile fragment

Projectile fragmentation (NSCL, GSI, RIKEN, GANIL)

Limits of existence – the neutron and proton driplines

Advancing Knowledge. Transforming Lives.

- Limits of existence neutron dripline
- The dripline is a benchmark that all nuclear models can be measured against
- Nuclear structure is qualitatively different (halo structures and skins)
- Sensitive to aspects of the nuclear force (see theory lectures)

North on the nuclear chart: The limit of mass and charge

Location of the driplines

Advancing Knowledge. Transforming Lives.

MICHIGAN STATE

VFR

<u>υ Ν Ι</u>

Experimental task: How to find a needle in a haystack

How many neutrons can a proton bind?

Advancing Knowledge. Transforming Lives.

The limit of nuclear existence is characterized by the nucleon driplines

 B. Jonson: "The driplines are the limits of the nuclear landscape where additional protons or neutrons can no longer be kept in the nucleus - they literally drip out."

• P. G. Hansen & J. A. Tostevin: "(the dripline is) where the nucleon separation energy goes to zero."

Where is the neutron dripline?

Advancing Knowledge. Transforming Lives.

Predictive power, anybody?

																						_		
		³¹ Cl	³² CI	³³ CI	³⁴ Cl	35CI	³⁶ CI	³⁷ Cl	³⁸ CI	³⁹ CI	⁴⁰CI	⁴¹ Cl	⁴² Cl	⁴³ Cl	44CI	⁴⁵ Cl	⁴⁶ CI	47CI	⁴⁸ CI	⁴⁹ CI		⁵¹ CI		
²⁸ S	²⁹ S	³⁰ S	³¹ S	³² S	³³ S	³⁴ S	³⁵ S	³⁶ S	³⁷ S	³⁸ S	³⁹ S	⁴⁰ S	41S	⁴² S	43S	44S	⁴⁵ S	⁴⁶ S	47S	⁴⁸ S				
27P	²⁸ P	²⁹ P	30P	31p	³² P	33p	34P	35p	36p	37p	38p	39P	40p	41P	42P	43p	44P	45p	⁴⁶ P					
²⁶ Si	²⁷ Si	²⁸ Si	²⁹ Si	³⁰ Si	³¹ Si	³² Si	³³ Si	³⁴ Si	³⁵ Si	³⁸ Si	³⁷ Si	³⁸ Si	³⁹ Si	⁴⁰ Si	⁴¹ Si	⁴² Si	⁴³ Si							
²⁵ AI	²⁶ AI	27AI	²⁸ AI	²⁹ AI	³⁰ AI	³¹ AI	³² AI	³³ AI	³⁴ AI	³⁵ AI	³⁶ AI	³⁷ AI	³⁸ AI	³⁹ AI	⁴⁰ AI	⁴¹ AI								
²⁴ Mg	²⁵ Mg	²⁶ Mg	²⁷ Mg	²⁸ Mg	²⁹ Mg	³⁰ Mg	³¹ Mg	³² Mg	³³ Mg	³⁴ Mg	³⁵ Mg	³⁶ Mg	³⁷ Mg	³⁸ Mg							?			
²³ Na	²⁴ Na	⁵⁷ Na	²⁶ Na	²⁷ Na	²⁸ Na	²⁹ Na	³⁰ Na	³¹ Na	³² Na	³³ Na	³⁴ Na	³⁵ Na		³⁷ Na										
²² Ne	²³ Ne	²⁴ Ne	²⁵ Ne	²⁶ Ne	²⁷ Ne	²⁸ Ne	²⁹ Ne	³⁰ Ne	³¹ Ne	³² Ne		³⁴ Ne												
²¹ F	²² F	²³ F	²⁴ F	²⁵ F	²⁶ F	²⁷ F		²⁹ F		³¹ F										_	FRD	М		
²⁰ O	²¹ O	²² O	²³ O	²⁴ O																	HFB	-8		
¹⁹ N	²⁰ N	²¹ N	²² N	²³ N																	HFB	-9		
18C	19C	20C		22C																				

Dripline history and a plan ...

Lukyanov et al., J. Phys. G 28, L41

Advancing Knowledge. Transforming Lives.

⁴⁸Ca (Z=20, N=28)

Production of ⁴⁰Mg from ⁴⁸Ca: Net loss of 8 protons with no neutrons removed!

Advancing Knowledge. Transforming Lives.

T. Baumann et al., Nature 449, 1022 (2007)

⁴⁰Mg and more!

nature T. Baumann *et al.*, Nature 449, 1022 (2007)

MICHIGAN STATE

Advancing Knowledge. Transforming Lives.

Data taking: 7.6 days at 5 x10¹¹ particles/second 3 events of ⁴⁰Mg 23 events of ⁴²Al 1 event ⁴³Al

Data taking: 7.6 days at 5 x10¹¹ particles/second

3 events of ⁴⁰Mg 23 events of ⁴²Al 1 event ⁴³Al

The existence of ^{42,43}Al indicates that the neutron dripline might be much further out than predicted by most of the present theoretical models, certainly out of reach at present generation facilities.

Proof of non-existence: ²⁶O and ²⁸O

Tarasov et al., PLB 409, 64 (1997)

Advancing Knowledge. Transforming Lives.

Guillemaud-Mueller et al., PRC 41, 937 (1990)

³⁶S on Ta at 78 MeV/u (GANIL)

Report absence of ²⁸O in the systematics of produced N=20 isotones

Discovery of new isotopes around the world

Advancing Knowledge. Transforming Lives.

Fragmentation of ²³⁸U at GSI

In-flight fission of ²³⁸U at RIKEN

77, 083201 (2008).

Masses

Advancing Knowledge. Transforming Lives.

Indirect

 Decay measurements and kinematics in two-body reactions $Q = M_A + M_a - M_b - M_B$ $Q_{\alpha} = M_B - M_A$

Direct

- Conventional mass spectrometry
 - Cern PS, Chalk River
- Time-of-flight
 - spectrometer (SPEG, TOFI, S800)
 - Multi-turn (cyclotrons, storage rings)
- Frequency measurements
 - Penning traps
 - Storage rings

reactions: decays: A(a,b)B $B \rightarrow A + b$

Mass separator (spectrograph, spectrometer)

Dispersion $D = \Delta x m / \Delta m$

Adapted from D. Lunney

TOF mass measurements – Spectrographs at NSCL

Advancing Knowledge. Transforming Lives.

 γ_t : relative change in path length by turn relative to change in Bp

Mass measurements in the storage ring at GSI I. Schottky mass spectrometry

Advancing Knowledge. Transforming Lives.

Mass excess for ¹⁸⁴Pt as determined in several runs using different reference isotopes and in different ionic charge states *q.* ($dm/m=5 \ 10^{-7}$)

Mass measurements in the storage ring at GSI II. Isochronous mass spectrometry

Advancing Knowledge. Transforming Lives.

Mass measurements with Penning traps

Advancing Knowledge. Transforming Lives.

Mass measurement via determination of <u>cyclotron frequency</u>

$$f_c = \frac{1}{2\pi} \cdot \frac{q}{m} \cdot B$$

from characteristic motion of stored

ions

PENNING trap

- Strong homogeneous magnetic field of known strength B provides radial confinement
- Weak electric 3D quadrupole field provides axial confinement

Mass measurements with Penning traps

Advancing Knowledge. Transforming Lives.

Adapted from K. Blaum

Mass measurements with Penning traps

Advancing Knowledge. Transforming Lives.

δm=280 eV

G. Bollen et al., PRL 96, 152501 (2006)

Masses – what are they good for?

Advancing Knowledge. Transforming Lives.

- Structure information
 - Shell closures and deformation from separation energies ($\delta m/m < 10^{-5}$)
- Astrophysics (Nucleosynthesis)
 - r process ($\delta m/m < 10^{-5}$, $\delta m < 10 \text{ keV}$)
 - rp process (δm/m ~ 10⁻⁷)
- Fundamental interactions and symmetries ($\delta m/m < 10^{-8}$)
 - CVC
 - CKM

Masses – what are they good for? Constrain theory

Advancing Knowledge. Transforming Lives.

Needed for r-process

Masses – what are they good for? Nuclear astrophysics

Advancing Knowledge. Transforming Lives.

Masses – what are they good for? Fundamental interactions/symmetries

Advancing Knowledge. Transforming Lives.

Physics beyond the Standard Model

(required precision: as good as possible, at least: $\delta m/m < 10^{-8}$)

- Conserved vector current (CVC) hypothesis
- Unitarity of the Cabbibo-Kobayashi-Maskawa (CKM) matrix

Advancing Knowledge. Transforming Lives.

Half-lives

Bulk activity measurements

Advancing Knowledge. Transforming Lives.

Implant activity in active stopper material for time t_i . Cease implantation and observe decay for time t_d .

Adapted from P. F. Mantica

Event-by-event correlation technique

Advancing Knowledge. Transforming Lives.

Reduced background from in-flight tracking and identification of individual isotopes in the beam on a particle-by-particle basis

Adapted from P. F. Mantica

Janssens, Broda, Mantica *et al.*, PLB546, 55 (2002)

Beta counting systems Example: BCS at NSCL

Advancing Knowledge. Transforming Lives.

PIN SSSD SSSD SSSD PINPIN fragment
DSSD SSSD SSSD SSSD
Drawing not
to scale.

Permits the correlation of fragment implants and subsequent beta decays on an event-byevent basis

Implant detector: 1 each MSL type BB1-1000 4 cm x 4 cm active area 1 mm thick 40 1-mm strips in x and y Calorimeter: 6 each MSL type W 5 cm active area 1 mm thick 16 strips in one dimension

Adapted from P. F. Mantica

¹⁰¹Sn β-decay

Advancing Knowledge. Transforming Lives.

Doubly magic nucleus accelerates synthesis of heavy elements

Particle identification in rare-isotope beam from NSCL at Michigan State University

Measured half-life of ⁷⁸Ni with 11 events This is the most neutron rich of the 10 possible classical doubly-magic nuclei in nature.

Result: 110 +100 -60 ms

P. Hosmer et al. PRL 94, 112501 (2005)

Model calculation for synthesis of heavy elements during the r-process in supernova explosions

Models produce excess of heavy elements with new shorter ⁷⁸Ni half-life

- → the synthesis of heavy elements in nature proceeds faster than previously assumed
- ... a step in the quest to find the origin of the heavy elements in the cosmos

Adapted from H. Schatz

10 years and a new facility later ... at RIBF in RIKEN

Advancing Knowledge. Transforming Lives.

Particle identification in rare-isotope beam from RIBF at RIKEN

Very similar experimental scheme

- Produced by in-flight fission of ²³⁸U
- Implantation into Si stack

Significantly reduced uncertainty in the halflife of ⁷⁸Ni and new results for more neutronrich N=50 isotones

Astrophysical conclusions unchanged

Z. Y. Xu et al. PRL 113, 032505 (2014)

Take away

Advancing Knowledge. Transforming Lives.

- Implementation of experiments can influence the discovery potential
- Experimenters need to be explicit about assumptions and model dependencies
- Examples of techniques to explore ground-state properties of exotic nuclei
 - Existence of a rare isotope one of the most basic benchmarks for theory, very challenging experiments
 - Nuclear masses important for many thing, including nuclear structure, astrophysics and fundamental symmetries
 - Ground-state halflives have a challengingly large range that requires experiments to adapt, important for nuclear structure, astrophysics and fundamental symmetries

Advancing Knowledge. Transforming Lives.

End