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What is High Performance Computing (HPC)?
Using today’s fastest computers (“supercomputers”) to solve 
technical computing problems (mostly in science and engineering). 
Often computations involve parallel computing.

Why is HPC interesting to scientists and engineers?

– Short answer: Better computational results
– More details:

• Could solve the same problem faster:
• Might be the key to making an application feasible (e.g., weather forecasts)
• Could repeat a calculation with multiple parameter sets to find the best one

• Could solve larger/more complex problems in the same amount of time
• Might lead to better models that are more accurate and realistic
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Why should you care about HPC?
• Research: Broad range of research in science, engineering, and other fields
• Applications: Important “real-world” applications: weather, data analysis, AI, 

personalized medicine, machine learning ...

Riken AICS, 2011
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Familiar Example: Weather Forecasting

Atmosphere modeled by dividing it into 3-dimensional cells.

Temperature, 
pressure, 
composition, etc.

Calculations for each cell repeated many times to model passage of time.
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Why is Global Weather Forecasting Challenging?

• Suppose whole global atmosphere divided into cells of size 
.125 mile ´ .125 mile ´ .25 mile to a height of 12 miles 
(48 cells high)
Þ about 1.3 ´ 1011 cells.

• Suppose each cell update uses ~200 arithmetic operations. 
Þ For one time step, ~2.5 x 1013 arithmetic operations are needed.

• To forecast the weather for 7 days using 1-minute intervals to track 
changes, a computer operating at 20 Gigaflops (2 x 1010 arithmetic 
operations/sec) on average would take ~1.25 x 107 seconds.
Þ It would take over 20 weeks to simulate 7 days!

• To do this in 1 hour would require a computer ~3500 times faster
Þ Computer speed of ~70 Tflops (70 x 1012 arithmetic ops/sec)
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Parallelism Makes Weather Forecasting Feasible

How can this sort of performance be achieved?

• Divide the problem among many individual processors (computers)

• But the computations in each cell depend on nearby cells, so now 
you have to deal with interprocessor communication, as well as with 
the computation. But with fast enough processors and a fast 
network, this can be made to work pretty well.
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Another Example: Modeling Interacting Bodies

Each body is affected by each other body through forces. 
Movement of each body in a short time period (a “time step”) is 
predicted by evaluating the total instantaneous forces on each 
body, calculating body velocities, and moving the bodies 
through the time step. Many time steps are required.
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Gravitational N-Body Problem
Model positions and movements of bodies in space subject to
gravitational forces from other bodies, using Newtonian physics.

Example: Cosmological Simulations
In 2005, the Millennium Simulation 
traced 21603, or just over 10 billion, 
“particles” (each representing ~1 
billion solar masses of dark matter) in 
a cube of side ~2 billion light years.

Required over 1 month of time on an 
IBM supercomputer, and generated 
~25 Terabytes of output. By analyzing 
the output, scientists were able to 
recreate the evolutionary history of 
~20 million galaxies populating the 
cube.
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Approaches to Modeling Many-Body Motion
Start at some known configuration of the bodies, and use 
Newtonian physics to model their motions over a large number 
of timesteps 

For each time step:
• Calculate the forces:

– “Brute Force” Algorithm: With N bodies, N-1 forces to calculate for 
each body, or approx. O(N2) calculations (50% reduction for symmetry)

• Move the bodies to new locations
• Repeat
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Challenges in Modeling Many-Body Motion
• A galaxy might have ~1011 stars. So one time step would require:

– ~5x1021 force calculations using “brute force”

• Suppose that, using 1 computer, each force calculation takes
0.1 µsec (might be optimistic!). Then 1 time step takes:

– Over 1.6x107 years using “brute force”

• To make this computation feasible, you either need a MUCH 
better algorithm, or you need to find a way for many computers to 
cooperate to make each time step much faster, or both
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Algorithmic Improvement: Clustering Approximation
Approximate the effect of a cluster of distant bodies by treating them as a 
single distant body with mass located at the center of mass of the cluster:

Side length = d

Accuracy of this approach depends
on the ratio θ=d/r. (Smaller is better.)
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This idea leads to O(N log2N) algorithms for N-Body problems. The approach 
has been “discovered” many times, including as the Fast Multipole Method 
by Leslie Greengard and Vladimir Rokhlin at Yale. 

In astrophysics, the idea underlies the Barnes-Hut algorithm, which reduces 
the serial runtime per timestep from 1.6x107 years to ~4 days. Further 
improvement can come from a “divide-and-conquer” parallel implementation 
based on adaptively dividing the cube into many sub-cubes.



Barnes-Hut Example

Initial distribution of 
5,000 bodies in 2 
simulated galaxies

Source for this and 
other images and for 
video: Ingo Berg from 
Wikipedia. 
(http://en.wikipedia.org
/wiki/Barnes%E2%80
%93Hut_simulation) 
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Barnes-Hut Full Partition

Shows full partition for 
5,000 bodies, each in 
its own cell. 
(Empty cells omitted.)
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Colliding Galaxies Video

Source:
http://en.wikipedi
a.org/wiki/Barne
s%E2%80%93H
ut_simulation
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A bit of history: HPC’s not really new!

• People have been developing and using “supercomputers” for a long time
• “Ancient” history: Supercomputers were very large monolithic computers
• Limited amounts of parallelism were incorporated in them.

CDC 7600 (c. 1970)
(36 MegaFlops Peak) Cray 1 (c. 1976)

(250 MegaFlops Peak)

IBM 7094
(c. mid-1960s)

Your cell phone is surely much faster than these supercomputers:
Online reports claim 1.2 Gigaflops or more on an iPhone 7
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Supercomputers Today
As of 2018:
• Today’s supercomputers are highly parallel computers
• Most are networked “clusters” of many commodity processors
• Some use accelerators, such as special-purpose computers based on the 

graphics processing units (GPUs) designed for desktop video 

Sunway TaihuLight (2016)
10.6 million cores

93.0 Linpack PetaFlops
World’s fastest (2016-2017)

Yale Omega Cluster (2009)
5632 cpus

57.8 Linpack TeraFlops

06/25/2018-16Yale Center for Research Computing

ORNL Summit (2018)
4608 nodes

2.3 million cores
6 NVIDIA Volta GPUs/node
122.3 Linpack PetaFlops

World’s fastest as of June 2018



Some reasons for parallel supercomputers
• Cost

– Monolithic machines require huge investments by companies or by the 
government for use by a relative handful of consumers

– Parallel machines can be built by connecting commodity parts (e.g., 
PCs or GPUs) whose cost is driven by huge standalone markets

• “Obvious” computational advantages
– More processors Þ More independent computations per second
– More memory Þ Less swapping & contention
– More disks or other I/O devices Þ Faster aggregate I/O

• Good algorithmic fit to many problems
– Many (most?) problems are “embarrassingly parallel” (e.g., Monte 

Carlo, parameter studies, etc.)
– “Divide-and-conquer”: often a useful approach that is naturally parallel
– “Assembly Lines”: another naturally parallel way to solve problems
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An even more important reason: Physics!

• Moore’s Law Transistors/chip double each 18-24 months at same cost 
• Dennard Scaling As transistors shrink, their power density stays constant
• Smaller transistors Faster switching; higher clock speeds; constant power
• Nirvana! Except that Dennard ignored leakage current & threshold

voltage, which don’t scale, leading to higher power density
• Higher power density More power consumption per chip
• More power More heat and higher temperature
• Higher temperature Unreliability

We’ve been living off of Moore’s Law and Dennard Scaling.

This has led to a “power wall” limiting chip frequencies to ~4 GHz since 2006.

If we can’t make individual processors faster simply by increasing clock speeds, 
how can we continue to increase performance in a given footprint?

Parallelism: To exploit increased transistor density (Moore’s Law), the industry 
delivers many processors (cores) per chip, without increasing the clock speed.

What do these really say? What are the ramifications for HPC?
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So, how fast are today’s supercomputers, anyway?
• In most cases, it depends on the application

• The standard comparison tool for technical computing is the “Linpack 
Benchmark” that looks at the time required to solve a set of linear equations:

!" = $
for a random NxN matrix ! and Nx1 vectors " and $. The benchmark score 
is the highest performance achieved for any value of N. (Often, the best N is 
the largest value for which the computation fits in memory on the machine.)

• Top500 List: (See www.top500.org.) Fastest 500 supercomputers ranked 
by Linpack Benchmark. Issued semiannually: Spring at ISC conf. in Europe; 
Fall at SC conf. in US. Now, there are also Green500 and Graph500 lists.

• Recent “World’s Fastest Computers” on Top500 list:
– 6/18-?: Summit (US, ORNL): 4608 nodes, 2.3 million cpus; 122.3 Linpack PFlops

– 6/16-11/17: Sunway TaihuLight (China): 10.6 million cpus; 93.0 Linpack PFlops
– 6/13-11/15: Tianhe-2 (China): 3.1 million cpus; 33.9 Linpack Petaflops

– 11/12: Titan (USA, Cray XK7): 561 thousand cpus, 17.6 Linpack Petaflops
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Most Recent Top500 List

Source: www.top500.org

~70 TFlops
(#1 in  11/04;
#237 in  11/11;
off list by 11/12)
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Top 500 Historical Performance Development

Source: www.top500.org
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Getting Started on Grace
• MacOS or Linux:

– research.computing.yale.edu/support/hpc/user-guide/connect-macos-and-linux

• Windows:
– research.computing.yale.edu/support/hpc/user-guide/connect-windows

• Steps:
1. Install software (if needed)
2. Create an ssh keypair and upload it to:

gold.hpc.yale.internal/cgi-bin/sshkeys.py
3. ssh netid@grace.hpc.yale.edu
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Getting Started with the MPI Exercise
• rsync –a ~ahs3/exercise .
• ls exercise

This should produce output similar to:

build-run-mpi.sh Makefile rwork.o task.c
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MPI “Hello World” Program – Initialization Section
#include <stdio.h>
#include <string.h>
#include <stddef.h>
#include <stdlib.h>
#include <unistd.h>
#include "mpi.h"

main(int argc, char **argv ) {
char message[100];
int i,rank, size, type=99;
int worktime, sparm, rwork(int,int);
double wct0, wct1, total_time, cput;

MPI_Status status;

MPI_Init(&argc,&argv); // Required MPI initialization call

MPI_Comm_size(MPI_COMM_WORLD,&size); // Get no. of processes
MPI_Comm_rank(MPI_COMM_WORLD, &rank); // Which process am I?
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MPI “Hello World” Program – Master Section
/* If I am the master (rank 0) ... */
if (rank == 0) {
sparm = rwork(0,0); //initialize the workers' work times
sprintf(message, "Hello, from process %d.",rank); // Create message
MPI_Barrier(MPI_COMM_WORLD); //wait for everyone to be ready
wct0 = MPI_Wtime(); // set the start time; then broadcast data
MPI_Bcast(message, strlen(message)+1, MPI_CHAR, 0, MPI_COMM_WORLD);
MPI_Bcast(&sparm, 1, MPI_INT, 0, MPI_COMM_WORLD);

/* Receive messages from the workers */
for (i=1; i<size; i++) {
MPI_Recv(message, 100, MPI_CHAR, i, type, MPI_COMM_WORLD, &status);
sleep(3); // Proxy for master's postprocessing of received data.
printf("Message from process %d: %s\n", status.MPI_SOURCE,message);

}

wct1 = MPI_Wtime(); // set the end time
total_time = wct1 - wct0; // Get total elapsed time
printf("Message printed by master: Total elapsed time is %f seconds.\n",

total_time);
}
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MPI “Hello World” Program – Worker Section
/* Otherwise, if I am a worker ... */
else {

MPI_Barrier(MPI_COMM_WORLD); //wait for everyone to be ready

/* Receive initial data from the master */
MPI_Bcast(message, 100, MPI_CHAR, 0, MPI_COMM_WORLD);
MPI_Bcast(&sparm, 1, MPI_INT, 0, MPI_COMM_WORLD);

worktime = rwork(rank,sparm); // Simulate some work

/* Create and send return message */
sprintf(message, "Hello from process %d after working for %d seconds.",

rank,worktime); 
MPI_Send(message, strlen(message)+1, MPI_CHAR, 0, type, MPI_COMM_WORLD);

}

MPI_Finalize(); // Required MPI termination call
}
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MPI “Hello World” Program – Slurm Script I
#!/bin/bash

# THIS SECTION CONTAINS INSTRUCTIONS TO SLURM

#SBATCH --partition=nnpss
#SBATCH --ntasks=4 # Set number of MPI processes
#SBATCH --ntasks-per-node=2 --ntasks-per-socket=1 # Set procs per socket/node
#SBATCH --cpus-per-task=1 # set number of cpus per MPI process
#SBATCH --mem-per-cpu=6100mb # set memory per cpu
#SBATCH --job-name=HELLO_WORLD
#SBATCH --time=5:00

# THIS SECTION MANAGES THE LINUX ENVIRONMENT

# The module load command sets up the Linux environment to use
# specific versions of the Intel compiler suite and OpenMPI.
module load Langs/Intel/15 MPI/OpenMPI/2.1.1-intel15

# echo some environment variables
echo $SLURM_JOB_NODELIST
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MPI “Hello World” Program – Slurm Script II
# THIS SECTION BUILDS THE PROGRAM

# Do a clean build
make clean
# My MPI program is named task
make task

# THIS SECTION RUNS THE PROGRAM

# Run the program several times using 2 nodes with 1 MPI process per socket.

# The run time for the runs may differ due to the built-in randomization.
mpirun -n 4 --map-by socket -display-map ./task
mpirun -n 4 --map-by socket -display-map ./task
mpirun -n 4 --map-by socket -display-map ./task
mpirun -n 4 --map-by socket -display-map ./task

06/25/2018-28Yale Center for Research Computing


