
High Performance/Parallel Computing

Andrew Sherman
Senior Research Scientist in Computer Science

Yale Center for Research Computing
Department of Computer Science

National Nuclear Physics Summer School
June 25, 2018

What is High Performance Computing (HPC)?
Using today’s fastest computers (“supercomputers”) to solve
technical computing problems (mostly in science and engineering).
Often computations involve parallel computing.

Why is HPC interesting to scientists and engineers?

– Short answer: Better computational results
– More details:

• Could solve the same problem faster:
• Might be the key to making an application feasible (e.g., weather forecasts)
• Could repeat a calculation with multiple parameter sets to find the best one

• Could solve larger/more complex problems in the same amount of time
• Might lead to better models that are more accurate and realistic

Yale Center for Research Computing 06/25/2018-2

Why should you care about HPC?
• Research: Broad range of research in science, engineering, and other fields
• Applications: Important “real-world” applications: weather, data analysis, AI,

personalized medicine, machine learning ...

Riken AICS, 2011

06/25/2018-3Yale Center for Research Computing

Familiar Example: Weather Forecasting

Atmosphere modeled by dividing it into 3-dimensional cells.

Temperature,
pressure,
composition, etc.

Calculations for each cell repeated many times to model passage of time.

06/25/2018-4Yale Center for Research Computing

Why is Global Weather Forecasting Challenging?

• Suppose whole global atmosphere divided into cells of size
.125 mile ´ .125 mile ´ .25 mile to a height of 12 miles
(48 cells high)
Þ about 1.3 ´ 1011 cells.

• Suppose each cell update uses ~200 arithmetic operations.
Þ For one time step, ~2.5 x 1013 arithmetic operations are needed.

• To forecast the weather for 7 days using 1-minute intervals to track
changes, a computer operating at 20 Gigaflops (2 x 1010 arithmetic
operations/sec) on average would take ~1.25 x 107 seconds.
Þ It would take over 20 weeks to simulate 7 days!

• To do this in 1 hour would require a computer ~3500 times faster
Þ Computer speed of ~70 Tflops (70 x 1012 arithmetic ops/sec)

06/25/2018-5Yale Center for Research Computing

Parallelism Makes Weather Forecasting Feasible

How can this sort of performance be achieved?

• Divide the problem among many individual processors (computers)

• But the computations in each cell depend on nearby cells, so now
you have to deal with interprocessor communication, as well as with
the computation. But with fast enough processors and a fast
network, this can be made to work pretty well.

5

2

3 4

6

8
1

06/25/2018-6Yale Center for Research Computing

Another Example: Modeling Interacting Bodies

Each body is affected by each other body through forces.
Movement of each body in a short time period (a “time step”) is
predicted by evaluating the total instantaneous forces on each
body, calculating body velocities, and moving the bodies
through the time step. Many time steps are required.

06/25/2018-7Yale Center for Research Computing

Gravitational N-Body Problem
Model positions and movements of bodies in space subject to
gravitational forces from other bodies, using Newtonian physics.

Example: Cosmological Simulations
In 2005, the Millennium Simulation
traced 21603, or just over 10 billion,
“particles” (each representing ~1
billion solar masses of dark matter) in
a cube of side ~2 billion light years.

Required over 1 month of time on an
IBM supercomputer, and generated
~25 Terabytes of output. By analyzing
the output, scientists were able to
recreate the evolutionary history of
~20 million galaxies populating the
cube.

06/25/2018-8Yale Center for Research Computing

Approaches to Modeling Many-Body Motion
Start at some known configuration of the bodies, and use
Newtonian physics to model their motions over a large number
of timesteps

For each time step:
• Calculate the forces:

– “Brute Force” Algorithm: With N bodies, N-1 forces to calculate for
each body, or approx. O(N2) calculations (50% reduction for symmetry)

• Move the bodies to new locations
• Repeat

06/25/2018-9Yale Center for Research Computing

Challenges in Modeling Many-Body Motion
• A galaxy might have ~1011 stars. So one time step would require:

– ~5x1021 force calculations using “brute force”

• Suppose that, using 1 computer, each force calculation takes
0.1 µsec (might be optimistic!). Then 1 time step takes:

– Over 1.6x107 years using “brute force”

• To make this computation feasible, you either need a MUCH
better algorithm, or you need to find a way for many computers to
cooperate to make each time step much faster, or both

06/25/2018-10Yale Center for Research Computing

Algorithmic Improvement: Clustering Approximation
Approximate the effect of a cluster of distant bodies by treating them as a
single distant body with mass located at the center of mass of the cluster:

Side length = d

Accuracy of this approach depends
on the ratio θ=d/r. (Smaller is better.)

06/25/2018-11Yale Center for Research Computing

This idea leads to O(N log2N) algorithms for N-Body problems. The approach
has been “discovered” many times, including as the Fast Multipole Method
by Leslie Greengard and Vladimir Rokhlin at Yale.

In astrophysics, the idea underlies the Barnes-Hut algorithm, which reduces
the serial runtime per timestep from 1.6x107 years to ~4 days. Further
improvement can come from a “divide-and-conquer” parallel implementation
based on adaptively dividing the cube into many sub-cubes.

Barnes-Hut Example

Initial distribution of
5,000 bodies in 2
simulated galaxies

Source for this and
other images and for
video: Ingo Berg from
Wikipedia.
(http://en.wikipedia.org
/wiki/Barnes%E2%80
%93Hut_simulation)

06/25/2018-12Yale Center for Research Computing

http://en.wikipedia.org/wiki/Barnes%E2%80%93Hut_simulation

Barnes-Hut Full Partition

Shows full partition for
5,000 bodies, each in
its own cell.
(Empty cells omitted.)

06/25/2018-13Yale Center for Research Computing

Colliding Galaxies Video

Source:
http://en.wikipedi
a.org/wiki/Barne
s%E2%80%93H
ut_simulation

06/25/2018-14Yale Center for Research Computing

A bit of history: HPC’s not really new!

• People have been developing and using “supercomputers” for a long time
• “Ancient” history: Supercomputers were very large monolithic computers
• Limited amounts of parallelism were incorporated in them.

CDC 7600 (c. 1970)
(36 MegaFlops Peak) Cray 1 (c. 1976)

(250 MegaFlops Peak)

IBM 7094
(c. mid-1960s)

Your cell phone is surely much faster than these supercomputers:
Online reports claim 1.2 Gigaflops or more on an iPhone 7

06/25/2018-15Yale Center for Research Computing

Supercomputers Today
As of 2018:
• Today’s supercomputers are highly parallel computers
• Most are networked “clusters” of many commodity processors
• Some use accelerators, such as special-purpose computers based on the

graphics processing units (GPUs) designed for desktop video

Sunway TaihuLight (2016)
10.6 million cores

93.0 Linpack PetaFlops
World’s fastest (2016-2017)

Yale Omega Cluster (2009)
5632 cpus

57.8 Linpack TeraFlops

06/25/2018-16Yale Center for Research Computing

ORNL Summit (2018)
4608 nodes

2.3 million cores
6 NVIDIA Volta GPUs/node
122.3 Linpack PetaFlops

World’s fastest as of June 2018

Some reasons for parallel supercomputers
• Cost

– Monolithic machines require huge investments by companies or by the
government for use by a relative handful of consumers

– Parallel machines can be built by connecting commodity parts (e.g.,
PCs or GPUs) whose cost is driven by huge standalone markets

• “Obvious” computational advantages
– More processors Þ More independent computations per second
– More memory Þ Less swapping & contention
– More disks or other I/O devices Þ Faster aggregate I/O

• Good algorithmic fit to many problems
– Many (most?) problems are “embarrassingly parallel” (e.g., Monte

Carlo, parameter studies, etc.)
– “Divide-and-conquer”: often a useful approach that is naturally parallel
– “Assembly Lines”: another naturally parallel way to solve problems

06/25/2018-17Yale Center for Research Computing

An even more important reason: Physics!

• Moore’s Law Transistors/chip double each 18-24 months at same cost
• Dennard Scaling As transistors shrink, their power density stays constant
• Smaller transistors Faster switching; higher clock speeds; constant power
• Nirvana! Except that Dennard ignored leakage current & threshold

voltage, which don’t scale, leading to higher power density
• Higher power density More power consumption per chip
• More power More heat and higher temperature
• Higher temperature Unreliability

We’ve been living off of Moore’s Law and Dennard Scaling.

This has led to a “power wall” limiting chip frequencies to ~4 GHz since 2006.

If we can’t make individual processors faster simply by increasing clock speeds,
how can we continue to increase performance in a given footprint?

Parallelism: To exploit increased transistor density (Moore’s Law), the industry
delivers many processors (cores) per chip, without increasing the clock speed.

What do these really say? What are the ramifications for HPC?

06/25/2018-18Yale Center for Research Computing

So, how fast are today’s supercomputers, anyway?
• In most cases, it depends on the application

• The standard comparison tool for technical computing is the “Linpack
Benchmark” that looks at the time required to solve a set of linear equations:

!" = $
for a random NxN matrix ! and Nx1 vectors " and $. The benchmark score
is the highest performance achieved for any value of N. (Often, the best N is
the largest value for which the computation fits in memory on the machine.)

• Top500 List: (See www.top500.org.) Fastest 500 supercomputers ranked
by Linpack Benchmark. Issued semiannually: Spring at ISC conf. in Europe;
Fall at SC conf. in US. Now, there are also Green500 and Graph500 lists.

• Recent “World’s Fastest Computers” on Top500 list:
– 6/18-?: Summit (US, ORNL): 4608 nodes, 2.3 million cpus; 122.3 Linpack PFlops

– 6/16-11/17: Sunway TaihuLight (China): 10.6 million cpus; 93.0 Linpack PFlops
– 6/13-11/15: Tianhe-2 (China): 3.1 million cpus; 33.9 Linpack Petaflops

– 11/12: Titan (USA, Cray XK7): 561 thousand cpus, 17.6 Linpack Petaflops

06/25/2018-19Yale Center for Research Computing

Most Recent Top500 List

Source: www.top500.org

~70 TFlops
(#1 in 11/04;
#237 in 11/11;
off list by 11/12)

06/25/2018-20Yale Center for Research Computing

Top 500 Historical Performance Development

Source: www.top500.org
06/25/2018-21Yale Center for Research Computing

Getting Started on Grace
• MacOS or Linux:

– research.computing.yale.edu/support/hpc/user-guide/connect-macos-and-linux

• Windows:
– research.computing.yale.edu/support/hpc/user-guide/connect-windows

• Steps:
1. Install software (if needed)
2. Create an ssh keypair and upload it to:

gold.hpc.yale.internal/cgi-bin/sshkeys.py
3. ssh netid@grace.hpc.yale.edu

06/25/2018-22Yale Center for Research Computing

Getting Started with the MPI Exercise
• rsync –a ~ahs3/exercise .
• ls exercise

This should produce output similar to:

build-run-mpi.sh Makefile rwork.o task.c

06/25/2018-23Yale Center for Research Computing

MPI “Hello World” Program – Initialization Section
#include <stdio.h>
#include <string.h>
#include <stddef.h>
#include <stdlib.h>
#include <unistd.h>
#include "mpi.h"

main(int argc, char **argv) {
char message[100];
int i,rank, size, type=99;
int worktime, sparm, rwork(int,int);
double wct0, wct1, total_time, cput;

MPI_Status status;

MPI_Init(&argc,&argv); // Required MPI initialization call

MPI_Comm_size(MPI_COMM_WORLD,&size); // Get no. of processes
MPI_Comm_rank(MPI_COMM_WORLD, &rank); // Which process am I?

06/25/2018-24Yale Center for Research Computing

MPI “Hello World” Program – Master Section
/* If I am the master (rank 0) ... */
if (rank == 0) {
sparm = rwork(0,0); //initialize the workers' work times
sprintf(message, "Hello, from process %d.",rank); // Create message
MPI_Barrier(MPI_COMM_WORLD); //wait for everyone to be ready
wct0 = MPI_Wtime(); // set the start time; then broadcast data
MPI_Bcast(message, strlen(message)+1, MPI_CHAR, 0, MPI_COMM_WORLD);
MPI_Bcast(&sparm, 1, MPI_INT, 0, MPI_COMM_WORLD);

/* Receive messages from the workers */
for (i=1; i<size; i++) {
MPI_Recv(message, 100, MPI_CHAR, i, type, MPI_COMM_WORLD, &status);
sleep(3); // Proxy for master's postprocessing of received data.
printf("Message from process %d: %s\n", status.MPI_SOURCE,message);

}

wct1 = MPI_Wtime(); // set the end time
total_time = wct1 - wct0; // Get total elapsed time
printf("Message printed by master: Total elapsed time is %f seconds.\n",

total_time);
}

06/25/2018-25Yale Center for Research Computing

MPI “Hello World” Program – Worker Section
/* Otherwise, if I am a worker ... */
else {

MPI_Barrier(MPI_COMM_WORLD); //wait for everyone to be ready

/* Receive initial data from the master */
MPI_Bcast(message, 100, MPI_CHAR, 0, MPI_COMM_WORLD);
MPI_Bcast(&sparm, 1, MPI_INT, 0, MPI_COMM_WORLD);

worktime = rwork(rank,sparm); // Simulate some work

/* Create and send return message */
sprintf(message, "Hello from process %d after working for %d seconds.",

rank,worktime);
MPI_Send(message, strlen(message)+1, MPI_CHAR, 0, type, MPI_COMM_WORLD);

}

MPI_Finalize(); // Required MPI termination call
}

06/25/2018-26Yale Center for Research Computing

MPI “Hello World” Program – Slurm Script I
#!/bin/bash

THIS SECTION CONTAINS INSTRUCTIONS TO SLURM

#SBATCH --partition=nnpss
#SBATCH --ntasks=4 # Set number of MPI processes
#SBATCH --ntasks-per-node=2 --ntasks-per-socket=1 # Set procs per socket/node
#SBATCH --cpus-per-task=1 # set number of cpus per MPI process
#SBATCH --mem-per-cpu=6100mb # set memory per cpu
#SBATCH --job-name=HELLO_WORLD
#SBATCH --time=5:00

THIS SECTION MANAGES THE LINUX ENVIRONMENT

The module load command sets up the Linux environment to use
specific versions of the Intel compiler suite and OpenMPI.
module load Langs/Intel/15 MPI/OpenMPI/2.1.1-intel15

echo some environment variables
echo $SLURM_JOB_NODELIST

06/25/2018-27Yale Center for Research Computing

MPI “Hello World” Program – Slurm Script II
THIS SECTION BUILDS THE PROGRAM

Do a clean build
make clean
My MPI program is named task
make task

THIS SECTION RUNS THE PROGRAM

Run the program several times using 2 nodes with 1 MPI process per socket.

The run time for the runs may differ due to the built-in randomization.
mpirun -n 4 --map-by socket -display-map ./task
mpirun -n 4 --map-by socket -display-map ./task
mpirun -n 4 --map-by socket -display-map ./task
mpirun -n 4 --map-by socket -display-map ./task

06/25/2018-28Yale Center for Research Computing

