Lecture II : *0νββ*-Decay

M.J. Ramsey-Musolf U Mass Amherst

$\overset{\Phi_{\Phi}}{\overset{\Phi_{\Phi}}}{\overset{\Phi_{\Phi}}{\overset{\Phi_{\Phi}}{\overset{\Phi_{\Phi}}{\overset{\Phi_{\Phi}}}{\overset{\Phi_{\Phi}}{\overset{\Phi_{\Phi}}{\overset{\Phi_{\Phi}}{\overset{\Phi_{\Phi}}{\overset{\Phi_{\Phi}}{\overset{\Phi_{\Phi}}{\overset{\Phi_{\Phi}}{\overset{\Phi_{\Phi}}}{\overset{\Phi_{\Phi}}{\overset{\Phi_{\Phi}}}{\overset{\Phi_{\Phi}}{\overset{\Phi_{\Phi}}}{\overset{\Phi_{\Phi}}}{\overset{\Phi_{\Phi}}}{\overset{\Phi_{\Phi}}}{\overset{\Phi_{\Phi}}}{\overset{\Phi_{\Phi}}}{\overset{\Phi_{\Phi}}}{\overset{\Phi_{\Phi}}}{\overset{\Phi_{\Phi}}}{\overset{\Phi_{\Phi}}}{\overset{\Phi_{\Phi}}}{\overset{\Phi_{\Phi}}}}{\overset{\Phi_{\Phi}}}{\overset{\Phi_{\Phi}}}}{\overset{\Phi_{\Phi}}}{\overset{\Phi_{\Phi}}}{\overset{\Phi_{\Phi}}}}{\overset{\Phi_{\Phi}}}{\overset{\Phi_{\Phi}}}{\overset{\Phi_{\Phi}}}}}}}}}}$		
	-	٦

AMHERST CENTER FOR FUNDAMENTAL INTERACTIONS Physics at the interface: Energy, Intensity, and Cosmic frontiers University of Massachusetts Amherst

http://www.physics.umass.edu/acfi/

NNPSS, Wright Laboratory Yale 6/18-29/18

Lecture II Goals

- Give a theoretical overview of $\partial v \beta \beta$ decay
- Connect $\partial \nu \beta \beta$ decay to the origin of matter
- Provide a framework for interpreting $0\nu\beta\beta$ decay results: the mechanisms
- Discuss the interplay with other experiments
- Invite questions !

Lecture II Outline

- I. Overview
- II. "Standard Mechanism" for $0\nu\beta\beta$ -Decay
- III. TeV Scale LNV
- *IV.* Sub-weak scale LNV
- V. Discussion questions

I. $0\nu\beta\beta$ -Decay Overview

What is Neutrinoless Double Beta Decay ?

 $A(Z,N) \rightarrow A(Z+2, N-2) + e^-e^-$

Test of total lepton number conservation

Why Do Nuclei Double Beta Decay ?

2v DBD:

$$\mathsf{A}(\mathsf{Z},\mathsf{N}) o \mathsf{A}(\mathsf{Z} extsf{+}2,\ \mathsf{N} extsf{-}2) + \ \mathbf{e}^{\scriptscriptstyle extsf{-}} \, \mathbf{e}^{\scriptscriptstyle extsf{-}} \, \overline{\mathbf{v}} \, \overline{\mathbf{v}}$$

Observed

- Is the neutrino its own antiparticle ?
- Why is there more matter than antimatter ?
- Why are neutrino masses so small?

- Is the neutrino its own antiparticle ?
- Why is there more matter than antimatter ?
- Why are neutrino masses so small?

Neutrinos and the Origin of Matter

- Heavy neutrinos decay out of equilibrium in early universe
- Majorana neutrinos can decay to particles and antiparticles
- Rates can be slightly different (CP violation)

 $\Gamma(N \to \ell H) \neq \Gamma(N \to \bar{\ell} H^*)$

• Resulting excess of leptons over anti-leptons partially converted into excess of quarks over anti-quarks by Standard Model sphalerons

Neutrinos and the Origin of Matter

- Heavy neutrinos decay out of equilibrium in early universe
- Majorana neutrinos can decay to particles and antiparticles
- Rates can be slightly different (CP violation)

 $\Gamma(N \to \ell H) \neq \Gamma(N \to \bar{\ell} H^*)$

• Resulting excess of leptons over anti-leptons partially converted into excess of quarks over anti-quarks by Standard Model sphalerons

0vββ-Decay: LNV? Mass Term?

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac Majorana

• Is the neutrino its own antiparticle ?

$$2v DBD:$$
 $A(Z,N) \rightarrow A(Z+2, N-2) + e^-e^- \overline{v} \overline{v}$

Ov DBD: $A(Z,N) \rightarrow A(Z+2, N-2) + e^-e^-$

• Is the neutrino its own antiparticle ?

$$2v \text{ DBD:} \qquad A(Z,N) \to A(Z+2, N-2) + e^-e^- \overline{v v}$$
If own antiparticle, can be emitted then absorbed during decay
$$0v \text{ DBD:} \qquad A(Z,N) \to A(Z+2, N-2) + e^-e^-$$

• Is the neutrino its own antiparticle ?

Yes \rightarrow *"Majorana neutrino":*

Theoretically favored explanation of the matterantimatter asymmetry & small scale of neutrino masses

 $No \rightarrow$ "Dirac neutrino":

Points to alternate origin of matter-antimatter asymmetry & some string theory underpinnings of neutrino masses

Ονββ-Decay: LNV? Mass Term?

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

0vββ-Decay: LNV? Mass Term?

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

Impact of observation

- Total lepton number not conserved at classical level
- New mass scale in nature, Λ
- Key ingredient for standard baryogenesis via leptogenesis

Ton Scale Experiments: Worldwide Quest

$0\nu\beta\beta$ decay Experiments - Efforts Underway

CUORE

EXO200

KamLAND Zen

	Collaboration	Isotope	Technique	mass (0vββ isotope)	Status
리	CANDLES	Ca-48	305 kg CaF ₂ crystals - liq. scint	0.3 kg	Construction
	CARVEL	Ca-48	⁴⁸ CaWO ₄ crystal scint.	~ ton	R&D
	GERDAI	Ge-76	Ge diodes in LAr	15 kg	Complete
	GERDA II	Ge-76	Point contact Ge in LAr	31	Operating
	MAJORANA DEMONSTRATOR	Ge-76	Point contact Ge	25 kg	Operating
	LEGEND	Ge-76	Point contact	~ ton	R&D
	NEMO3	Mo-100 Se-82	Foils with tracking	6.9 kg 0.9 kg	Complete
	SuperNEMO Demonstrator	Se-82	Foils with tracking	7 kg	Construction
	SuperNEMO	Se-82	Foils with tracking	100 kg	R&D
	LUCIFER (CUPID)	Se-82	ZnSe scint. bolometer	18 kg	R&D
	AMoRE	Mo-100	CaMoO ₄ scint. bolometer	1.5 - 200 kg	R&D
	LUMINEU (CUPID)	Mo-100	ZnMoO ₄ / Li ₂ MoO ₄ scint. bolometer	1.5 - 5 kg	R&D
	COBRA	Cd-114,116	CdZnTe detectors	10 kg	R&D
	CUORICINO, CUORE-0	Te-130	TeO ₂ Bolometer	10 kg, 11 kg	Complete
	CUORE	Te-130	TeO ₂ Bolometer	206 kg	Operating
	CUPID	Te-130	TeO ₂ Bolometer & scint.	~ ton	R&D
	SNO+	Te-130	0.3% wtTe suspended in Scint	160 kg	Construction
'n	EXO200	Xe-136	Xe liquid TPC	79 kg	Operating
	nEXO	Xe-136	Xe liquid TPC	~ ton	R&D
	KamLAND-Zen (I, II)	Xe-136	2.7% in liquid scint.	380 kg	Complete
	KamLAND2-Zen	Xe-136	2.7% in liquid scint.	750 kg	Upgrade
	NEXT-NEW	Xe-136	High pressure Xe TPC	5 kg	Operating
	NEXT	Xe-136	High pressure Xe TPC	100 kg - ton	R&D
	PandaX - 1k	Xe-136	High pressure Xe TPC	~ ton	R&D
	DCBA	Nd-150	Nd foils & tracking chambers	20 kg	R&D

GERDA

MAJORANA

SNO+

J. Wilkerson INT DBD Program June 2017

The U.S. Context

2015 NSAC Long Range Plan

RECOMMENDATION II

The excess of matter over antimatter in the universe is one of the most compelling mysteries in all of science. The observation of neutrinoless double beta decay in nuclei would immediately demonstrate that neutrinos are their own antiparticles and would have profound implications for our understanding of the matterantimatter mystery.

We recommend the timely development and deployment of a U.S.-led ton-scale neutrinoless double beta decay experiment.

• The rate is exceptionally tiny

$$\Gamma \sim (m_{eff})^2$$

- The rate is exceptionally tiny
- It must be distinguished from "two neutrino" double beta decay, an observed process

21

- The rate is exceptionally tiny
- It must be distinguished from "two neutrino" double beta decay, an observed process

Experimental details: See D. Parno second lecture !

0vββ-Decay: LNV? Mass Term?

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

Impact of observation

- Total lepton number not conserved at classical level
- New mass scale in nature, Λ
- Key ingredient for standard baryogenesis via leptogenesis

BSM Physics: Where Does it Live ?

BSM Physics: Where Does it Live ?

Is the mass scale associated with m_v far above M_W ? Near M_W ? Well below M_W ?

Why Might A "Ton-Scale" Exp't See It?

II. The "Standard Mechanism"

Why Might A "Ton-Scale" Exp't See It?

Three Light Neutrinos: What Do We Know ?

Three Light Neutrinos: What Do We Know ?

Three Light Neutrinos: What Do We Know ?

0vββ-Decay: LNV? Mass Term?

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{C}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

"Standard" Mechanism

- Light Majorana mass generated at the conventional see-saw scale: Λ ~ 10¹² – 10¹⁵ GeV
- 3 light Majorana neutrinos mediate decay process

Why Might A "Ton-Scale" Exp't See It?

Three active light neutrinos

33

Why Might A "Ton-Scale" Exp't See It?

Three active light neutrinos

Interpreting a Positive Result

35

Interpreting a Null Result

What Would a Null Result Imply ?

What Would a Null Result Imply ?

St'd Mech: What Would a Null Result Imply ?

St'd Mech: What Would a Null Result Imply ?

St'd Mech: What Would a Null Result Imply ?

Interpreting a Positive Result

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

Light v exchange

$$\frac{1}{T_{1/2}} = G^{0\nu}(E,Z) |M_{0\nu}|^2 |\langle m_{\beta\beta} \rangle|^2$$

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$
Dirac
$$Majorana$$

$$Light v exchange$$

$$\frac{1}{T_{1/2}} = G^{0v}(E, Z) |M_{0v}|^2 |\langle m_{\beta\beta} \rangle|^2$$

$$W^-$$

$$A(Z, N)$$

$$A(Z+2, N-2)$$

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

N/

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac

$$\mathcal{L}_{mass} = y\bar{L}\tilde{H}\nu_{R} + h.c. \qquad \mathcal{L}_{mass} = \frac{y}{\Lambda}\bar{L}^{c}HH^{T}L + h.c.$$
Dirac
$$M_{ajorana}$$
Light v exchange
$$\frac{1}{T_{1/2}} = G^{0\nu}(E,Z) |M_{0\nu}|^{2} |\langle m_{\beta\beta} \rangle|^{2}$$

$$M_{o\nu}: Quadratic dependence on g_{A}$$

$$\int_{0}^{N_{R}} \mathcal{L}_{mass} = \frac{y}{\Lambda}\bar{L}^{c}HH^{T}L + h.c.$$

$$M_{ajorana}$$

III. TeV Scale LNV

LNV Mass Scale & *0vββ*-Decay

Two parameters: Effective coupling & effective heavy particle mass

0vββ-Decay: LNV? Mass Term?

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

TeV LNV Mechanism

- Majorana mass generated at the TeV scale
 - Low-scale see-saw
 - Radiative m_v
- *m_{MIN}* << 0.01 eV but 0vββ-signal accessible with tonne-scale exp'ts due to heavy Majorana particle exchange

0vββ-Decay: LNV? Mass Term?

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

TeV LNV Mechanism

- Majorana mass generated at the TeV scale
 - Low-scale see-saw
 - Radiative m_v
- *m_{MIN}* << 0.01 eV but 0vββ-signal accessible with tonne-scale exp'ts due to heavy Majorana particle exchange

Ονββ-Decay: LNV? Mass Term?

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac Majorana

TeV LNV Mechanism

$$\frac{A_H}{A_L} \sim \frac{M_W^4 \bar{k}^2}{\Lambda^5 m_{\beta\beta}}$$

O(1) for Λ ~ 1 TeV

Ονββ-Decay: LNV? Mass Term?

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{C}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

TeV LNV Mechanism

$$\frac{A_H}{A_L} \sim \frac{M_W^4 \bar{k}^2}{\Lambda^5 m_{\beta\beta}}$$

O(1) for $\Lambda \sim 1 \text{ TeV}$

Implications

TeV LNV & Leptogenesis

54

TeV LNV & Leptogenesis

Baryogenesis alternatives

55

A(Z, N)

A(Z+2, N-2)

56

 \overline{u}

X

57

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

TeV Scale LNV

Can it be discovered with combination of $0\nu\beta\beta$ & LHC searches ?

Simplified models

u

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

 e^{-} du**g**₁ du S^+ e^{i} $_{F^0} \not\downarrow \overline{\mathcal{g}_2}$ LHC: $pp \rightarrow jj e^-e^$ e S^+ ^I u

d

TeV Scale LNV

Effective operators:

$$\begin{split} \mathcal{L}_{\mathrm{LNV}}^{\mathrm{eff}} &= \frac{C_1}{\Lambda^5} \mathcal{O}_1 + \mathrm{h.c.} \\ \mathcal{O}_1 &= \bar{Q} \tau^+ d \bar{Q} \tau^+ d \bar{L} L^C \end{split}$$

$$g_{\rm eff} = \sqrt{g_1 g_2}$$

59

Ονββ-Decay: Rate & Mass Dependence

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

Light v exchange

Heavy particle exchange

$$\frac{1}{T_{1/2}} = G^{0\nu}(E,Z) |M_{0\nu}| |\langle m_{\beta\beta} \rangle|^2$$

$$\frac{1}{T_{1/2}} = G_{01} \left(\frac{\text{TeV}}{m_e}\right)^2 \left(\frac{\Lambda_H}{\text{TeV}}\right)^4 \left(\frac{1}{18}\right) \left(\frac{v}{\text{TeV}}\right)^8 \\ \times \left(\frac{1}{g_A \cos \theta_C}\right)^4 |M_0|^2 \left[\frac{C_{\text{eff}}^2}{(\Lambda/\text{TeV})^{10}}\right],$$

Quadratic dependence on $m_{\beta\beta}$

Scales as 1 / M¹⁰

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

 $\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

$0v\beta\beta$ -Decay: TeV Scale LNV & m_v

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$
Dirac Majorana

Implications for m_{v} :

Schecter-Valle: non-vanishing Majorana mass at (multi) loop level Simplified model: possible (larger) one loop Majorana mass 65

$0v\beta\beta$ -Decay: TeV Scale LNV & m_v

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac Majorana

Implications for m_{v} :

A hypothetical scenario

IV. Sub-Weak Scale LNV

LNV Mass Scale & *0vββ*-Decay

> 3 Light Neutrinos

Lightest neutrino mass (eV) ightarrow

Sterile Neutrinos & 0v\beta\beta-Decay

3 active light neutrinos

Lightest neutrino mass (eV) ightarrow

$$|m_{\beta\beta}| = |\mu_1 + \mu_2 e^{i\alpha_2} + \mu_3 e^{i\alpha_3}|$$

3+1 active light neutrinos

Lightest neutrino mass (eV) ightarrow

$$|m_{\beta\beta}| = \left|\mu_1 + \mu_2 e^{i\alpha_2} + \mu_3 e^{i\alpha_3} + \mu_4 e^{i\alpha_4}\right|$$
Sterile Neutrinos & 0v\beta\beta-Decay

Lightest neutrino mass (eV) ightarrow

$$|m_{\beta\beta}| = |\mu_1 + \mu_2 e^{i\alpha_2} + \mu_3 e^{i\alpha_3}|$$

3+1 active light neutrinos

Lightest neutrino mass (eV) ightarrow

$$|m_{\beta\beta}| = \left|\mu_1 + \mu_2 e^{i\alpha_2} + \mu_3 e^{i\alpha_3} + \mu_4 e^{i\alpha_4}\right|$$

V. Discussion Questions

- What is a sphaleron ?
- Is the CPV in V_{PMNS} the same as CPV for leptogenesis ?
- What is the conventional leptogenesis scale ?
- What is the Schecter-Valle (black box) theorem ?