Lectures I : Neutrino Theory Basics

M.J. Ramsey-Musolf U Mass Amherst

AMHERST CENTER FOR FUNDAMENTAL INTERACTIONS Physics at the interface: Energy, Intensity, and Cosmic frontiers University of Massachusetts Amherst

http://www.physics.umass.edu/acfi/

NNPSS, Wright Laboratory Yale 6/18-29/18

About MJRM

Theoretical Physics

- Why does the Universe contain more matter than antimatter ?
- What are the laws of nature beyond those of the Standard Model & General Relativity ?
- How do quantum field theories work?

My pronouns: he/him/his

Fundamental Symmetries & Neutrinos

EDM searches: BSM CPV, Origin of Matter	<i>0vββ decay searches:</i> Nature of neutrino, Lepton number violation, Origin of Matter
Electron & muon prop's &	Radioactive decays & other
interactions:	tests
SM Precision Tests, BSM	SM Precision Tests, BSM
"diagnostic" probes	"diagnostic" probes

Fundamental Symmetries & Neutrinos

<i>θνββ decay searches:</i> Nature of neutrino, Lepton number violation, Origin of Matter Lectures I & II
Radioactive decays & other tests SM Precision Tests, BSM "diagnostic" probes

Lecture I Goals

- Review the basic theoretical formulation of neutrino oscillation phenomenology
- *Review some of the open questions in neutrino physics*
- Provide a simple overview of classes of neutrino mass models with example illustrations
- Invite questions !

Lecture I Outline

- I. Overview
- II. Neutrino oscillations imply non-zero m_{ν}
- III. Open questions
- IV. Neutrino Mass Models
- V. Discussion questions

I. Overview

Theoretical complement to D. Parno's excellent experimental overview

The Origin of Matter

The Origin of Matter

Cosmic Energy Budget

- B violation (sphalerons)
- C & CP violation
- Out-of-equilibrium or CPT violation

- B violation (sphalerons)
- C & CP violation
- Out-of-equilibrium or CPT violation

- B violation (sphalerons)
- C & CP violation
- Out-of-equilibrium or CPT violation

Scenarios: leptogenesis, EW baryogenesis, Afflek-Dine, asymmetric DM, cold baryogenesis, postsphaleron baryogenesis...

- B violation (sphalerons)
- C & CP violation
- Out-of-equilibrium or CPT violation

Scenarios: leptogenesis, EW baryogenesis. Afflek-Dine, asymmetric DM, cold baryogenesis, postsphaleron baryogenesis...

Fermion Masses & Baryon Asymmetry

Fermion Masses & Baryon Asymmetry

Fermion Masses & Baryon Asymmetry

Lecture III

Lecture II

20

"See saw mechanism"

Physical state masses

$$m_1 pprox rac{m_D^2}{M_N}$$
 ~ eV $m_2 pprox M_N$ ~ 10^{12} – 10^{15} GeV

II. Neutrino Oscillations Implies $m_v \neq 0$

Flavor (weak interaction) eigenstates:

Mass eigenstates:

 $|
u_A
angle \ , |
u_B
angle$

 $|
u_1
angle \ , |
u_2
angle$

Unitary transformation:

$$\begin{pmatrix} |\nu_A\rangle \\ |\nu_B\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} \\ -\sin\theta_{12} & \cos\theta_{12} \end{pmatrix} \begin{pmatrix} |\nu_1\rangle \\ |\nu_2\rangle \end{pmatrix}$$
$$\bigvee$$

Initial state, created by weak interaction (e.g. β -decay):

$$|\psi(0)\rangle = |\nu_A\rangle = \cos\theta_{12} |\nu_1\rangle + \sin\theta_{12} |\nu_2\rangle$$
 e.g., $\nu_A = \nu_e$

Time evolution:

$$|\psi(t)\rangle = e^{-iE_1t} \cos\theta_{12} |\nu_1\rangle + e^{-iE_2t} \sin\theta_{12} |\nu_2\rangle$$

What is probability of being in state $|v_A\rangle$ at time t after creation ?

$$\mathcal{P}(
u_A
ightarrow
u_A)$$
 "Survival probability"

Survival amplitude:

$$\langle \nu_A | \psi(t) \rangle = e^{-iE_1 t} \cos \theta_{12} \langle \nu_A | \nu_1 \rangle + e^{-iE_2 t} \sin \theta_{12} \langle \nu_A | \nu_2 \rangle$$
$$= e^{-iE_1 t} \left[\cos^2 \theta_{12} + \sin^2 \theta_{12} e^{-i(E_2 - E_2)t} \right]$$

Survival probability:

 $\mathcal{P}(\nu_A \to \nu_A) = 1 - 4\cos^2\theta_{12}\sin^2\theta_{12}\sin^2[(E_2 - E_1)t/2]$

Survival probability:

 $\mathcal{P}(\nu_A \to \nu_A) = 1 - 4\cos^2\theta_{12}\sin^2\theta_{12}\sin^2[(E_2 - E_1)t/2]$

Massive, relativistic neutrinos (why ?)

$$E_2 - E_1 = \sqrt{p^2 + m_2^2} - \sqrt{p^2 + m_1^2} \approx \frac{m_2^2 - m_1^2}{2p} \approx \frac{m_2^2 - m_1^2}{2E} \qquad t = L/v \approx L$$

Survival probability:

 $\mathcal{P}(\nu_A \to \nu_A) = 1 - 4\cos^2\theta_{12}\sin^2\theta_{12}\sin^2[(E_2 - E_1)t/2]$

Massive, relativistic neutrinos (why ?)

$$E_2 - E_1 = \sqrt{p^2 + m_2^2} - \sqrt{p^2 + m_1^2} \approx \frac{m_2^2 - m_1^2}{2p} \approx \frac{m_2^2 - m_1^2}{2E}$$
 $t = L/v \approx L$

$$\mathcal{P}(\nu_A \to \nu_A) = 1 - 4\cos^2\theta_{12}\sin^2\theta_{12}\sin^2\left[\frac{(m_2^2 - m_1^2)L}{4E}\right]$$
$$= 1 - \sin^2 2\theta_{12}\sin^2\left[\frac{(m_2^2 - m_1^2)L}{4E}\right]$$

28

$$\mathcal{P}(\nu_A \to \nu_A) = 1 - 4\cos^2\theta_{12}\sin^2\theta_{12}\sin^2\left[\frac{(m_2^2 - m_1^2)L}{4E}\right]$$
$$= 1 - \sin^2 2\theta_{12}\sin^2\left[\frac{(m_2^2 - m_1^2)L}{4E}\right]$$

- Two massless neutrinos: $\theta_{12} = 0$
- At least one massive neutrino: $\theta_{12} \neq 0$ and $\mathcal{P}(v_A \rightarrow v_A) < 1$
- Dependence on $\Delta m^2 \times (L/E)$
- Transition probability: $\mathcal{P}(v_A \rightarrow v_B) = 1 \mathcal{P}(v_A \rightarrow v_A)$

29

B. Three Light Neutrinos

Lepton mixing:

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} N_R + \text{h.c.}$$

$$\tilde{H}_a = \epsilon_{ab} H_b^*$$

$$\nu_{Li}^{I} = (S_{\nu})_{ij} \nu_{Lj}^{\text{diag}}$$
$$N_{Ri}^{I} = (T_{N})_{ij} N_{Rj}^{\text{diag}}$$
$$\ell_{Li}^{I} = (S_{\ell})_{ij} \ell_{Lj}^{\text{diag}}$$
$$\ell_{Ri}^{I} = (T_{\ell})_{ij} \ell_{Rj}^{\text{diag}}$$

Pontecorvo-Maki-Nakagawa-Sakata

$$V_{\rm PMNS} = S_{\ell}^{\dagger} S_{\nu}$$

$$J^{W-}_{\mu} = \bar{L} \, \gamma_{\mu} \tau^{-} V_{\rm PMNS} \, L$$

B. Three Light Neutrinos

Pontecorvo-Maki-Nakagawa-Sakata

 $V_{
m PMNS}$ =

 $\begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{bmatrix} \times \operatorname{diag}(1, e^{i\frac{\alpha_{21}}{2}}, e^{i\frac{\alpha_{31}}{2}}).$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

"Reactor"

"Solar"

31

"Atmospheric"

B. Three Light Neutrinos

Oscillation probability (vacuum)

$$\mathcal{P}(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta} - 4 \sum_{i>j} \Re(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}) \sin^{2}\left(\Delta m_{i j}^{2} \frac{L}{4E}\right) + 2 \sum_{i>j} \Im(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}) \sin\left(\Delta m_{i j}^{2} \frac{L}{2E}\right)$$

$$V_{PMNS} = U$$

C. Oscillations in Matter

References:

• P. Hernandez, CERN-2016-005

Matter Effects: MSW

Forward scattering in matter

CC Hamiltonian

 $\mathcal{H}_{CC} = 2\sqrt{2}G_F \ [\bar{e}\gamma_{\mu}P_L\nu_e] \ [\bar{\nu}_e\gamma^{\mu}P_Le]$ Fierz transf $= 2\sqrt{2}G_F \ [\bar{e}\gamma_{\mu}P_Le] \ [\bar{\nu}_e\gamma^{\mu}P_L\nu_e]$

$$\langle \bar{e}\gamma_{\mu}P_{L}e\rangle_{\text{unpol. med.}} = \delta_{\mu 0}\frac{N_{e}}{2} \qquad \langle \mathcal{H}_{\text{CC}} + \mathcal{H}_{\text{NC}}\rangle_{\text{unpol. med.}} = \bar{\nu}V_{m}\gamma^{0}(1-\gamma_{5})\nu$$

$$V_{m} = \begin{pmatrix} \frac{G_{F}}{\sqrt{2}}\left(N_{e} - \frac{N_{n}}{2}\right) & 0 & 0\\ 0 & \frac{G_{F}}{\sqrt{2}}\left(-\frac{N_{n}}{2}\right) & 0\\ 0 & 0 & \frac{G_{F}}{\sqrt{2}}\left(-\frac{N_{n}}{2}\right) \end{pmatrix} \qquad 34$$

Matter Effects: MSW

Forward scattering in matter

CC Hamiltonian

 $\mathcal{H}_{CC} = 2\sqrt{2}G_F \ [\bar{e}\gamma_{\mu}P_L\nu_e] \ [\bar{\nu}_e\gamma^{\mu}P_Le]$ Fierz transf $= 2\sqrt{2}G_F \ [\bar{e}\gamma_{\mu}P_Le] \ [\bar{\nu}_e\gamma^{\mu}P_L\nu_e]$

$$\langle \bar{e}\gamma_{\mu}P_{L}e\rangle_{\text{unpol. med.}} = \delta_{\mu 0}\frac{N_{e}}{2} \qquad \langle \mathcal{H}_{\text{CC}} + \mathcal{H}_{\text{NC}}\rangle_{\text{unpol. med.}} = \bar{\nu}V_{m}\gamma^{0}(1-\gamma_{5})\nu$$

$$V_{m} = \begin{pmatrix} \frac{G_{F}}{\sqrt{2}}\left(N_{e} - \frac{N_{n}}{2}\right) & 0 & 0\\ 0 & \frac{G_{F}}{\sqrt{2}}\left(-\frac{N_{n}}{2}\right) & 0\\ 0 & \frac{G_{F}}{\sqrt{2}}\left(-\frac{N_{n}}{2}\right) & \frac{G_{F}}{\sqrt{2}}\left(-\frac{N_{n}}{2}\right) \end{pmatrix} \qquad \text{Neutral current contribution}$$

$$35$$

Matter Effects: MSW

Forward scattering in matter

CC Hamiltonian

 $\mathcal{H}_{CC} = 2\sqrt{2}G_F \ [\bar{e}\gamma_{\mu}P_L\nu_e] \ [\bar{\nu}_e\gamma^{\mu}P_Le]$ Fierz transf $= 2\sqrt{2}G_F \ [\bar{e}\gamma_{\mu}P_Le] \ [\bar{\nu}_e\gamma^{\mu}P_L\nu_e]$
Forward scattering in matter

 $\langle \mathcal{H}_{\rm CC} + \mathcal{H}_{\rm CC} \rangle_{\rm unpol. med.} = \bar{\nu} V_m \gamma^0 (1 - \gamma_5) \nu$

$$V_m = \begin{pmatrix} \frac{G_F}{\sqrt{2}} \left(N_e - \frac{N_n}{2} \right) & 0 & 0 \\ 0 & \frac{G_F}{\sqrt{2}} \left(-\frac{N_n}{2} \right) & 0 \\ 0 & 0 & \frac{G_F}{\sqrt{2}} \left(-\frac{N_n}{2} \right) \end{pmatrix}$$

Dirac Eq: Effective mass = f(E, h)

 Δm^2 & mixing angles depend on E & N_e

 Δm^2 & mixing angles depend on E & N_e

Two-flavor example:

$$\Delta \tilde{m}^2 = \sqrt{\left(\Delta m^2 \cos 2\theta \mp 2\sqrt{2}E G_F N_e\right)^2 + \left(\Delta m^2 \sin 2\theta\right)^2},$$

$$\sin^2 2\tilde{\theta} = \frac{\left(\Delta m^2 \sin 2\theta\right)^2}{(\Delta \tilde{m}^2)^2}$$

Resonance:

$$\sin^2 2\tilde{\theta} = 1 \qquad \qquad \sqrt{2} G_F N_e \mp \frac{\Delta m^2}{2E} \cos 2\theta = 0$$

Resonance: would be level crossing

Variable matter density (sun)

Consider adiabatic variation of N_e

 $\begin{aligned} |\tilde{\nu}_1\rangle &= |\nu_e\rangle \,\cos\tilde{\theta} - |\nu_\mu\rangle \,\sin\tilde{\theta}, \\ |\tilde{\nu}_2\rangle &= |\nu_e\rangle \,\sin\tilde{\theta} + |\nu_\mu\rangle \,\cos\tilde{\theta}. \end{aligned}$

Electron neutrino produced at center of sun

$$2\sqrt{2}G_F N_e(0) \gg \Delta m^2 \cos 2\theta$$

$$\tilde{\theta} \simeq \frac{\pi}{2} \Rightarrow |\nu_e\rangle \simeq |\tilde{\nu}_2\rangle$$

Exiting sun: $N_e = 0$

$$ilde{ heta}
ightarrow heta_{
m vac} \qquad \qquad extsf{v}_{m e}
ightarrow heta_{\mu}$$

$$\mathcal{P}(\nu_A \to \nu_A) = 1 - \sin^2 2\theta_{12} \sin^2 \left[\frac{(m_2^2 - m_1^2)L}{4E}\right]$$

L/E >> 1 : average to 1/2

Neutrino spectrum includes both regions: need to take the "MSW effect" into account

Solar Neutrinos

Standard Solar Model (SSM)

Analysis of terrestrial spectrum requires
 convolution of SSM predictions w/ MSW effect

Oscillation Parameters

Particle Data Group & H. Murayama

Parameter	best-fit	3σ
$\Delta m_{21}^2 [10^{-5} \text{ eV}^2]$	7.37	6.93 - 7.96
$\Delta m^2_{31(23)}$ [10 ⁻³ eV ²]	2.56(2.54)	2.45 - 2.69 (2.42 - 2.66)
$\sin^2 \theta_{12}$	0.297	0.250 - 0.354
$\sin^2 \theta_{23}, \Delta m^2_{31(32)} > 0$	0.425	0.381 - 0.615
$\sin^2 \theta_{23}, \Delta m^2_{32(31)} < 0$	0.589	0.384 - 0.636
$\sin^2 \theta_{13}, \Delta m^2_{31(32)} > 0$	0.0215	0.0190 - 0.0240
$\sin^2 \theta_{13}, \Delta m^2_{32(31)} < 0$	0.0216	0.0190 - 0.0242
δ/π	1.38 (1.31)	2σ: (1.0 - 1.9)
		$(2\sigma: (0.92-1.88))$

Oscillation Parameters

See D. Parno slides

$^{+0.20}_{-0.16}$ 7.05-8.14 2.4%
±0.03 2.41–2.60
$^{+0.03}_{-0.04}$ 2.31-2.51 1.3%
$^{+0.20}_{-0.16}$ 2.73–3.79 5.5%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} +0.083 \\ -0.069 \\ +0.074 \\ -0.076 \end{array} \begin{array}{c} 1.96-2.41 \\ 1.99-2.44 \end{array} \begin{array}{c} 3.5\% \end{array}$
$\begin{array}{cccc} {}^{+0.21}_{-0.15} & 0.87{-}1.94 & {\color{red}10\%}\\ {}^{+0.13}_{-0.15} & 1.12{-}1.94 & {\color{red}9\%}\end{array}$

deSalas et al, 1708.01186 (May 2018)

III. Open Questions

- Majorana or Dirac ?
- Mass hierarchy ?
- Absolute mass ?
- CPV ?
- Light sterile neutrinos ?
- Neutrino vs. quark mixing ?
- Theoretical origin of m_{ν}

III. Open Questions

- Majorana or Dirac ?
- Mass hierarchy ?
- Absolute mass ?
- CPV ?
- Light sterile neutrinos ?
- Neutrino vs. quark mixing ?
- Theoretical origin of m_{ν}

Absolute Mass & Mass Hierarchy

Absolute Mass & Mass Hierarchy

Absolute Mass & Mass Hierarchy

³H β-decay
Cosmology & astrophysics

Kinematic Neutrino Mass Measurements

$^{3}\text{H} ightarrow ^{3}\text{He}~e^{-}\, ar{ u}$

KATRIN

$$\frac{dN}{dp_e} \propto (E_0 - E_e)^2 \left[1 - \frac{m_{\nu}^2}{(E_0 - E_e)^2} \right]$$

Matter Power Spectrum

K. Abazajian ACFI neutrino mass workshop

Massive neutrinos suppress power (relative to large scale power) at scales below free streaming scale 51

Matter Power Spectrum

Neutrino Free Streaming

$$\Omega_{M} = \Omega_{v} + \Omega_{DM} + \Omega_{B}$$

$$\delta \rho_{v} \longleftrightarrow \delta \rho_{DM}$$

Free Streaming Scale

 $L_{\rm fs} \propto m_{
u}^{-1/2}$

K. Abazajian ACFI neutrino mass workshop

Matter Power Spectrum

Neutrino Free Streaming

$$\Omega_{M} = \Omega_{v} + \Omega_{DM} + \Omega_{B}$$

$$\delta \rho_{v} \longleftrightarrow \delta \rho_{DM}$$

Free Streaming Scale

 $L_{\rm fs} \propto m_{
u}^{-1/2}$

 $\delta \rho_{v}$ (power) suppressed for L < L_{fs}

Matter Power Spectrum

Neutrino Free Streaming

Matter Power Spectrum

Neutrino Free Streaming

K. Abazajian ACFI neutrino mass workshop

IV. Neutrino Mass Models

How do we understand the origin of m_v theoretically ?

IV. Neutrino Mass Models

•	Type I see-saw	"vSM", "vMSSM"
•	Type II see-saw	LRSM
•	Type III see-saw	GUTs
•	Inverse see-saw	LRSM
•	Radiative	MSSM

+ combinations & many other examples

IV. Neutrino Mass Models

•	Type I see-saw	"vSM", "vMSSM"
•	Type II see-saw	LRSM
•	Type III see-saw	GUTs
•	Inverse see-saw	LRSM
•	Radiative	MSSM

+ combinations & many other examples

Mass Term?

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac Majorana

Mass Term?

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

Neutrino Mass Models

•	Type I see-saw	"vSM", "vMSSM"
•	Type II see-saw	LRSM
•	Type III see-saw	GUTs
•	Inverse see-saw	LRSM
•	Radiative	MSSM

+ combinations & many other examples

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac Majorana

One generation: $SM + one N_R$

 $\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} N_R + \text{h.c.} + M_N \bar{N}_R^C N_R$

$$\mathcal{L}_{\text{mass}} = \left(\begin{array}{cc} \bar{\nu}_L & \bar{N}_R^C \end{array} \right) \left(\begin{array}{cc} 0 & m_D \\ m_D & M_N \end{array} \right) \left(\begin{array}{c} \nu_L \\ N_R \end{array} \right)$$

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c}$$

Majorana

One generation: $SM + one N_R$

Lepton number violating

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} N_R + \text{h.c.} + M_N \bar{N}_R^C N_R$$

$$\mathbf{\mathcal{L}}_{\text{mass}} = \left(\begin{array}{cc} \bar{\nu}_L & \bar{N}_R^C \end{array} \right) \left(\begin{array}{cc} 0 & m_D \\ m_D & M_N \end{array} \right) \left(\begin{array}{c} \nu_L \\ N_R \end{array} \right)$$

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

One generation:
$$SM + one N_R$$

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} N_R + \text{h.c.} + M_N \bar{N}_R^C N_R$$

$$\downarrow$$

$$\mathcal{L}_{\text{mass}} = \left(\bar{\nu}_L \ \bar{N}_R^C \right) \left(\begin{array}{c} 0 & m_D \\ m_D & M_N \end{array} \right) \left(\begin{array}{c} \nu_L \\ N_R \end{array} \right) \left(\begin{array}{c} m_1 \approx \frac{m_D^2}{M_N} \\ m_2 \approx M_N \end{array} \right)$$
65

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = rac{y}{\Lambda} ar{L}^c H H^T L + \text{h.c.}$$

Majorana

"v MSM"

"v MSSM"

Neutrino Mass Models

•	Type I see-saw	"vSM", "vMSSM"
•	Type II see-saw	LRSM
•	Type III see-saw	GUTs
•	Inverse see-saw	LRSM
•	Radiative	MSSM

+ combinations & many other examples

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac Majorana

Introduce "Complex Triplet": $\Delta_L \sim (1, 3, 2)$

$$\Delta_L = \begin{pmatrix} \Delta^+ \sqrt{2} & \Delta^+ \\ \Delta^0 & -\Delta^+ \sqrt{2} \end{pmatrix}$$

 $\Delta^{_{0}}$ vev ightarrow Majorana $m_{_{V}}$

$$\mathcal{L} = \frac{g}{2} h_{ij} \left[\bar{L}^{C_i} \varepsilon \Delta_L L^j \right] + \text{h.c.}$$

Lepton number violating

Types I & II: Left-Right Symmetric Model

BSM Mass Scale

Left-Right Symmetric Model

73

Gauge boson mass eigenstates

$$W_1^+ = \cos \xi W_L^+ + \sin \xi e^{-i\alpha} W_R^+$$
$$W_2^+ = -\sin \xi e^{i\alpha} W_L^+ + \cos \xi W_R^+$$

CKM Matrices for LH & RH sectors: quarks

$$u_{Li}^{I} = (S_{u})_{ij} u_{Lj}^{\text{mass}}$$

$$u_{Ri}^{I} = (T_{u})_{ij} u_{Rj}^{\text{mass}}$$

$$d_{Li}^{I} = (S_{d})_{ij} d_{Lj}^{\text{mass}}$$

$$d_{Ri}^{I} = (T_{d})_{ij} d_{Rj}^{\text{mass}}$$

$$V_{\text{CKM}}^{L} = S_{u}^{\dagger} S_{d}$$

$$V_{\text{CKM}}^{R} = T_{u}^{\dagger} T_{d}$$

Gauge boson mass eigenstates

$$W_1^+ = \cos \xi W_L^+ + \sin \xi e^{-i\alpha} W_R^+$$
$$W_2^+ = -\sin \xi e^{i\alpha} W_L^+ + \cos \xi W_R^+$$

PMNS Matrices for LH & RH sectors: leptons

$$\nu_{Li}^{I} = (S_{\nu})_{ij} \nu_{Lj}^{\text{diag}}$$

$$N_{Ri}^{I} = (T_{N})_{ij} N_{Rj}^{\text{diag}}$$

$$\ell_{Li}^{I} = (S_{\ell})_{ij} \ell_{Lj}^{\text{diag}}$$

$$\ell_{Ri}^{I} = (T_{\ell})_{ij} \ell_{Rj}^{\text{diag}}$$

$$V_{\text{PMNS}}^{L} = S_{\nu}^{\dagger} S_{\ell}$$

Two sources of m_{v} :

$$\mathcal{L} = \frac{g}{2} h_{ij} \left[\bar{L}^{C_i} \varepsilon \Delta_L L^j \right] + (L \leftrightarrow R) + \text{h.c.}$$

Neutrino Mass Models

•	Type I see-saw	"vSM", "vMSSM"
•	Type II see-saw	LRSM
•	Type III see-saw	GUTs
•	Inverse see-saw	LRSM
•	Radiative	MSSM

+ combinations & many other examples

Type II See-Saw

Introduce new scalars (S) & Majorana fermions (F): "mediators"

Attach Higgs lines as appropriate to get Weinberg operator

Recent mini-review: H. Sugiyama, 1505.01738

Type II See-Saw

Introduce new scalars (S) & Majorana fermions (F): "mediators"

"Zee Model"

Recent mini-review: H. Sugiyama, 1505.01738

Type II See-Saw

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac Majorana

SUSY with "R parity" violation

$$P_R = (-1)^{2S+3(B-L)}$$

"Superpotential"

$$W_{\Delta L=1} = \frac{1}{2} \lambda_{ijk} L_i L_j \bar{e}_k + \lambda'_{ijk} L_i Q_j \bar{d}_k + \mu'_i L_i H_u,$$

$$\tilde{d}_{R, \bullet} \bullet \tilde{d}_L$$

$$\tilde{d}_{R, \bullet} \bullet \tilde{d}_L$$

V. Discussion Questions

- What is the see-saw scale (M_N) ?
- What might the comparison of m_v from terrestrial & astrophysical determinations teach us?
- How do we know $N_v = 3$?
- How might we determine the correct neutrino mass model ?