The Electron-Ion Collider

Lecture 1

Thomas Ullrich (BNL/Yale) NNPSS, June 25, 2018

The Electron-Ion Collider does not exist

The Electron-Ion Collider

does not exist
 Yet!!

Over 800 people from 169 institutions and 29 countries are working hard to make it happen within the next decade.

I am one of them.

The Electron-Ion Collider on One Page

The Electron-Ion Collider will be a machine for unlocking the secrets of gluons that binds the building blocks of visible matter in the universe.

Tools:

- The world's first polarized electron-polarized proton collider
- The world's first electron-heavy ion collider
- Fine resolution inside proton down to $10-18$ meters

- Counter rotating beams of electrons and protons/ions collide at an interaction point
- The probe (electron) is structure-less and scatters off a "target". The process is called Deep Inelastic Scattering.

Outline (Lecture 1)

1. Probing Matter
1.1. Scattering Experiments
1.2. Electron Scattering
2. Quark Models and QCD
2.1. Static Quark Model
2.2. QCD
2.3. Gluons
3. Studying Matter at the Smallest Scale
3.1. DIS \& Kinematics
3.2. Structure Functions
3.3. Parton Distribution

Function

Related Lectures

- Heavy Ion Theory, Bjoern Schenke
- Heavy Ion Experimental, Megan Connors
- Hadron Structure Theory, Alexei Prokudin
- Hadron Structure Experimental, Anselm Vossen

1. Probing Matter

Scattering of protons on protons is like colliding Swiss watches to find out how they are build.

R. Feynman

Probing Matter (1909)

The first exploration of subatomic structure was undertaken by Rutherford at Manchester using Au atoms as targets and α particles as probes.

scintillating screen

Probing Matter (1909)

The first exploration of subatomic structure was undertaken by Rutherford at Manchester using Au atoms as targets and α particles as probes.

Plum Pudding Model

Detail of gold foil (Thomson):

Probing Matter (1909)

The first exploration of subatomic structure was undertaken by Rutherford at Manchester using Au atoms as targets and α particles as probes.

Observed result:

\oplus
Positive Nucleus Theory explain α deflection:

Probing Matter (1909)

The first exploration of subatomic structure was undertaken by Rutherford at Manchester using Au atoms as targets and α particles as probes.

Elastic scattering of charged particles in Coulomb field (point-like source):

$$
\frac{d \sigma}{d \Omega}=\left(\frac{Z Z^{\prime}}{E}\right)^{2} \frac{1}{\sin ^{4}\left(\frac{1}{2} \theta\right)}
$$

Studying Matter at Small Scales

Light Microscope
Wave length: 380-740 nm
Resolution: > 200 nm

Electron Microscope
Wave length: 0.002 nm (100 keV)
Resolution: >0.2 nm

Studying Matter at Small Scales

Light Microscope
Wave length: 380-740 nm
Resolution: > 200 nm

Electron Microscope
Wave length: $0.002 \mathrm{~nm}(100 \mathrm{keV})$
Resolution: >0.2 nm

Fixed Target Particle
Accelerator Experiments
Wave length: $0.01 \mathrm{fm}(20 \mathrm{GeV})$
Resolution: $\sim 0.1 \mathrm{fm}$

Electron Accelerator

Probing Matter with Electrons

The SLAC experiments in the 1960s established the quark model and our modern view of particle physics.

$$
\begin{aligned}
& \text { Mott }=\text { Rutherford + Spin } \\
& \frac{d \sigma}{d \Omega}=\left(\frac{d \sigma}{d \Omega}\right)_{\text {Mott }}\left|F\left(q^{2}\right)\right|^{2} \\
& q^{2}=\left(\mathbf{p}_{1}-\mathbf{p}_{2}\right)^{2}
\end{aligned}
$$

Formfactor: $F\left(q^{2}\right)$
Fourier transform
of charge distributions

Probing Matter with Electrons

The SLAC experiments in the 1960s established the quark model and our modern view of particle physics.

Probing Matter with Electrons

The SLAC experiments in the 1960s established the quark model and our modern view of particle physics.

Scattered electron is deflected by a known B-field and a fixed vertical angle: determine E^{\prime}

Spectrometer can rotate in the horizontal plane,
vary θ

Probing Matter with Electrons

The SLAC experiments in the 1960s established the quark model and our modern view of particle physics.

elastic:

Constant $F\left(q^{2}\right)$:
\Rightarrow scattering on pointlike constituent of the nucleon
quarks

2. Quarks Gluons and QCD

"Static" Quark Model

Quarks: spin $1 / 2$ fermions, color charge
Baryons:

M. Gell-Mann,
K. Nishijima (> 1964)

Property Quark	d	u	s	c	b	t
$\mathrm{Q}-$ electric charge	$-\frac{1}{3}$	$+\frac{2}{3}$	$-\frac{1}{3}$	$+\frac{2}{3}$	$-\frac{1}{3}$	$+\frac{2}{3}$
$\mathrm{I}-$ isospin	$\frac{1}{2}$	$\frac{1}{2}$	0	0	0	0
$\mathrm{I}_{z}-$ isospin z-component	$-\frac{1}{2}$	$+\frac{1}{2}$	0	0	0	0
$\mathrm{~S}-$ strangeness	0	0	-1	0	0	0
$\mathrm{C}-$ charm	0	0	0	+1	0	0
$\mathrm{~B}-$ bottomness	0	0	0	0	-1	0
$\mathrm{~T}-$ topness	0	0	0	0	0	+1

"Static" Quark Model

Quarks: spin $1 / 2$ fermions, color charge

Mesons:

Eight-fold Way:
Account for every hadron we found so far
M. Gell-Mann,
K. Nishijima (> 1964)

"Static" Quark Model

Quarks: spin $1 / 2$ fermions, color charge
M. Gell-Mann,
K. Nishiiima (> 1964)

For detailed properties of multi-quark systems the static (constituent) model has failed almost completely and given no predictions which have been verified by experiment.

How can a model be so successful in the quarkantiquark and three quark systems and fail for almost everything else?

What's missing?

Recall: Quantum Electrodynamic

Theory of electromagnetic interactions

- Exchange particles (photons) do not carry electric charge
- Flux is not confined: $V(r) \sim 1 / r . \quad F(r) \sim 1 / r^{2}$

$$
V(r)=-\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0} r}=-\frac{\alpha_{e m}}{r}
$$

Example Feynman Diagram: $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation

Coupling constant (α): Interaction Strength In QED: $\alpha_{\mathrm{em}}=1 / 137$

Quantum Chromodynamics (QCD)

Quantum Chromo Dynamics is the "nearly perfect" fundamental theory of the strong interactions
F. Wilczek, hep-ph/9907340

- Three color charges: red, green and blue

- Exchange particles (gluons) carry color charge and can selfinteract

Self-interaction: QCD significantly harder to analyze than QED

- Flux is confined:

$$
V(r)=-\frac{4}{3} \frac{\alpha_{s}}{r}+k r
$$

Long range aspect \Rightarrow quark confinement and existence of nucleons

Gluons: They Exist!

1979 Discovery of the Gluon
Physics Letters B, 15 December 1980 Mark-J, Tasso, Pluto, Jade experiment at PETRA ($\mathrm{e}^{+} \mathrm{e}^{-}$collider) at $\operatorname{DESY}(\sqrt{ } \mathrm{s}=13-32 \mathrm{GeV})$

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}} \rightarrow 2$-jets

Gluons: They Exist!

1979 Discovery of the Gluon
Physics Letters B, 15 December 1980 Mark-J, Tasso, Pluto, Jade experiment at PETRA ($\mathrm{e}^{+} \mathrm{e}^{-}$collider) at $\operatorname{DESY}(\sqrt{ } \mathrm{s}=13-32 \mathrm{GeV})$

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}} \mathrm{g} \rightarrow$ 3-jets

Gluons: They Exist!

1979 Discovery of the Gluon
Physics Letters B, 15 December 1980 Mark-J, Tasso, Pluto, Jade experiment at PETRA ($\mathrm{e}^{+} \mathrm{e}^{-}$collider) at $\operatorname{DESY}(\sqrt{ } \mathrm{s}=13-32 \mathrm{GeV})$

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}} \mathrm{g} \rightarrow$ 3-jets

Understanding QCD ?

$L_{Q C D}=\bar{q}\left(i \gamma^{\mu} \partial_{\mu}-m\right) q-g\left(\bar{q} \gamma^{\mu} T_{a} q\right) A_{\mu}^{a}-\frac{1}{4} G_{\mu \nu}^{a} G_{a}^{\mu \nu}$

- "Emergent" Phenomena not evident from Lagrangian
- Asymptotic Freedom
- $\alpha_{s}\left(Q^{2}\right) \sim 1 / \log \left(Q^{2} / \Lambda^{2}\right)$
- in vacuum ($\mathrm{Q} \sim 1 / R$)
- Confinement
- Free quarks not observed in nature
- Quarks only in bound states

Understanding QCD ?

$$
L_{Q C D}=\bar{q}\left(i \gamma^{\mu} \partial_{\mu}-m\right) q-g\left(\bar{q} \gamma^{\mu} T_{a} q\right) A_{\mu}^{a}-\frac{1}{4} G_{\mu \nu}^{a} G_{a}^{\mu \nu}
$$

- Gluons \& their self-interaction
- Determine essential features of strong interactions
- Dominate structure of QCD vacuum (fluctuations in gluon fields)
- Responsible for $>98 \%$ of the visible mass in universe

Understanding QCD ?

$L_{Q C D}=\bar{q}\left(i \gamma^{\mu} \partial_{\mu}-m\right) q-g\left(\bar{q} \gamma^{\mu} T_{a} q\right) A_{\mu}^{a}-\frac{1}{4} G_{\mu \nu}^{a} G_{a}^{\mu \nu}$

Abelian

Cannot "see" the glue in the low-energy world
Despite this conjectured dominance, properties of gluons in matter remain largely unexplored
G.

Activiruotionty II vy oyotolit (Iativel

- Gluons \& their self-interaction
- Determine essential features of strong interactions
- Dominate structure of QCD vacuum (fluctuations in gluon fields)
- Responsible for $>98 \%$ of the visible mass in universe

3. Studying Matter at the Smallest Scale

International System Ruler

square
quare hectometer cubic decimeter cubic centimeter
ubic decimeters
$=1000 \mathrm{~L}$ liters
rams
$=1000000 \mu \mathrm{~g}$ or mcg micrograms
megagram $=1000 \mathrm{~kg}$

Interrelationship:

One liter of water fills one cubic decimeter and weighs one kilogram. So, one thousand liters of water fill one cubic meter and weigh one ton.

Deep Inelastic Scattering (DIS)

Deep Inelastic Scattering (DIS)

Qt:

$$
\begin{aligned}
Q^{2} & =-q^{2}=-\left(k-k^{\prime}\right)^{2} \\
& \approx 4 E E^{\prime} \sin ^{2}\left(\frac{\theta}{2}\right)
\end{aligned}
$$

- 4-momentum transfer from scattered electron
- invariant mass sq. of γ^{*}
- "Resolution" power
- Virtuality
- real photon $\mathrm{Q}=0$

Deep Inelastic Scattering (DIS)

$$
y=\frac{p q}{p k}=1-\frac{E_{e}^{\prime}}{E_{e}} \cos ^{2}\left(\frac{\theta_{e}^{\prime}}{2}\right)
$$

- Inelasticity
- Fraction of electron's energy lost in nucleon restframe
- $0<y<1$

Deep Inelastic Scattering (DIS)

$x=\frac{Q^{2}}{2 p q}$

- Bjorken-x
- x is fraction of the nucleon's momentum carried by the struck quark

Deep Inelastic Scattering (DIS)

x : momentum fraction of parton
Q2: resolution power
y : inelasticity
s : center-of-mass energy sq.

$$
Q^{2} \approx s \cdot x \cdot y
$$

Deep ($\mathrm{Q}^{2}>\mathrm{mp}^{2}$) Inelastic ($\mathrm{W}^{2} \gg \mathrm{~m}^{2}$) Scattering = DIS

Deep Inelastic Scattering (DIS)

x : momentum fraction of parton
Q2: resolution power
y : inelasticity
s : center-of-mass energy sq.

Deep ($\mathrm{Q}^{2}>\mathrm{mp}^{2}$) Inelastic ($\mathrm{W}^{2} \gg \mathrm{~m}^{2}$)
Scattering = DIS
N.B.: This picture was developed in the "infinite momentum frame" (IMF). That works nicely when one assume massless quarks and gluons (partons). Despite all this it is also used for example for massive charm quarks. Some care has to be taken and x needs to be "adjusted".

The $x-Q^{2}$ Plane

Energy s

- Low-x reach requires large $\sqrt{ } s$
- Large-Q2 reach requires large $\sqrt{ } s$
- y at colliders typically limited to $0.95<y<0.01$

Structure Functions

Inclusive e+p collisions:
(only scattered electron is measured, rest ignored)

$$
\frac{d^{2} \sigma^{e p \rightarrow e X}}{d x d Q^{2}}=\frac{4 \pi \alpha_{e, m .}^{2}}{x Q^{4}}\left[\left(1-y+\frac{y^{2}}{2}\right) F_{2}\left(x, Q^{2}\right)-\frac{y^{2}}{2} F_{L}\left(x, Q^{2}\right)\right]
$$

F_{2} and F_{L} are key in understanding the structure of hadrons
N.B.: At very high energies a 3rd structure function comes into play: F_{3} Ignored here and in the rest

More Practical: Reduced Cross-Section

Inclusive Cross-Section:

$$
\frac{d^{2} \sigma^{e A \rightarrow e X}}{d x d Q^{2}}=\frac{4 \pi \alpha^{2}}{x Q^{4}}\left[\left(1-y+\frac{y^{2}}{2}\right) F_{2}\left(x, Q^{2}\right)-\frac{y^{2}}{2} F_{L}\left(x, Q^{2}\right)\right]
$$

Reduced Cross-Section:

$$
\begin{aligned}
& \sigma_{r}=\left(\frac{d^{2} \sigma}{d x d Q^{2}}\right) \frac{x Q^{4}}{2 \pi \alpha^{2}\left[1+(1-y)^{2}\right]}=F_{2}\left(x, Q^{2}\right)-\frac{y^{2}}{1+(1-y)^{2}} F_{L}\left(x, Q^{2}\right) \\
& \sigma_{r}\left(x, Q^{2}\right)=F_{2}^{A}\left(x, Q^{2}\right)-\frac{y^{2}}{Y^{+}} F_{L}^{A}\left(x, Q^{2}\right)
\end{aligned}
$$

Rosenbluth Separation:

- Recall $Q^{2}=x$ y s
- Measure at different $\sqrt{ } \mathrm{s}$
- Plot $\sigma_{\text {red }}$ versus $\mathrm{y} 2 / \mathrm{Y}^{+}$for fixed $\mathrm{x}, \mathrm{Q}^{2}$
- F_{2} is σ_{red} at $\mathrm{y} 2 / \mathrm{Y}^{+}=0$
- $\mathrm{F}_{\mathrm{L}}=$ Slope of $\mathrm{y} 2 / \mathrm{Y}^{+}$

Studying Matter at the Smallest Scales

ep/eA Collider Experiments
Wave Length: $0.0001 \mathrm{fm}(10 \mathrm{GeV}+100 \mathrm{GeV})$
Resolution: $\sim 0.01-0.001 \mathrm{fm}$

F2: The Key Structure Function

F2: The Key Structure Function

Bjorken Scaling: $F_{2}\left(x, Q^{2}\right) \rightarrow F_{2}(x)$ virtual photon interacts with a single essentially free quark

Bjorken scaling:

$$
\begin{array}{ll}
+6^{\circ} & \circ 18^{\circ} \\
\times 10^{\circ} & \Delta 26^{\circ}
\end{array}
$$

Point-like particles cannot be further resolved.
Their measurement does not depend on wavelength, hence Q^{2} independence.

Fz: The Key Structure Function

F2: The Key Structure Function

Quark and Gluon Distributions

Structure functions allows us to extract the quark $q\left(x, Q^{2}\right)$ and gluon $g\left(x, Q^{2}\right)$ distributions (PDFs).
In LO: Probability to find parton with $\mathrm{x}, \mathrm{Q}^{2}$ in proton
PDF: Connecting experiment (e.g. pp) with theory
Jets, Drell-Yan, etc.: $\sigma_{\substack{\text { Parton Distribution } \\ \text { Function (PDF) }}}^{\sigma_{o}=\hat{\sigma}_{a \rightarrow o}}$
Hadron Production: $\quad \sigma_{o}=f_{i \rightarrow a} \otimes \hat{\sigma}_{a \rightarrow b} \otimes D_{b \rightarrow o}$

Fragmentation
Functions

Quark and Gluon Distributions

Structure functions allows us to extract the quark $q\left(x, Q^{2}\right)$ and gluon $g\left(x, Q^{2}\right)$ distributions (PDFs).
In LO: Probability to find parton with x, Q^{2} in proton

What is Needed:

- Good data
- Best: F2 (ep), jets, Drell-Yan (pp)
- Bad: Hadrons
- pQCD Calculation of the processes
- LO, NLO, NNLO
- QCD Evolution Equations
- DGLAP: Evolution in Q2 (small to large) at fixed x (integrodifferential equations)
, BFKL: Evolution in x at fixed Q2

Figure 1.1: The processes related to the lowest order $Q C D$ splitting functions. Each splitting function $P_{p^{\prime} p}(x / z)$ gives the probability that a parton of type p converts into a parton of type p^{\prime}, carrying fraction x / z of the momentum of parton p

Quark and Gluon Distributions

- Quarks: $\mathrm{q}_{\mathrm{i}}\left(\mathrm{x}, \mathrm{Q}^{2}\right)$ from F_{2} (or reduced cross-section)
- Gluons: $\mathrm{g}\left(\mathrm{x}, \mathrm{Q}^{2}\right)$ through scaling violation: $\mathrm{dF}^{2 / d} \mathrm{dln}^{2}$

$$
\begin{aligned}
& \text { pQCD+ } \\
+ & \text { DGLAP Evolution } \\
& f\left(x, Q_{1}^{2}\right) \rightarrow f\left(x, Q_{2}^{2}\right)
\end{aligned}
$$

Quark and Gluon Distributions

- Quarks: $\mathrm{q}_{\mathrm{i}}\left(\mathrm{x}, \mathrm{Q}^{2}\right)$ from F_{2} (or reduced cross-section)
- Gluons: $g\left(x, Q^{2}\right)$ through scaling violation: $\mathrm{dF}^{2 / d} \mathrm{dln}^{2}$

Quark and Gluon Distributions

- Quarks: $\mathrm{q}_{\mathrm{i}}\left(\mathrm{x}, \mathrm{Q}^{2}\right)$ from F_{2} (or reduced cross-section)
- Gluons: $g\left(x, Q^{2}\right)$ through scaling violation: $\mathrm{dF}^{2} / \mathrm{dln}^{2}$

Proton is almost entirely glue for $\mathbf{x}<0.1$

Here goes the naive picture that protons are made of 3 quarks (recall static quark model)

Hera's Impact

PDFs before HERA - Gluon - $\mathrm{xg}\left(\mathrm{x}, \mathrm{Q}^{2}\right)$
BCDMS

CERN-EP/89-07
January 17th, 1989

CDHS

CERN-EP/89-103
15 August 1989

PDFs: Much Progress, Still Shortcomings

CTEQ14: a modern proton PDF

- Large uncertainties at $x=10^{-3}$ and 10^{-4} at the small Q ${ }^{2}$ although high quality data exist.
- The precision of low Q^{2} data is ineffectual due to the lack of data at the larger Q2 (Evolution from low to high Q^{2})

Uncertainties from PDF dominate many "BSM" searches

Strong Evidence that QCD is the Correct Theory

Structure functions measured at HERA ep collider

Jet cross-sections: pp collisions at LHC and $\overline{p p}$ collisions at Fermilab

Are we done?

Lattice QCD

to be continued ...

