

Wright Lab Quantum Information Science in High Energy Physics

OKBaker, Yale-WL 8-April-2022 Wright Lab Quantum Sensing Workshop Yale Quantum Week

Current Personnel

Student

Daniel Qenani Yale Undergraduate

Christian Weber

BNL Postdoc

Kamal Benslama LUM Professor

Ryan Leong Yale Graduate

Recent Past and Present

- Quantum Entanglement Quantum Information Science in High Energy Physics – Christian Weber Lightning Talk
- Unsupervised Quantum Machine Learning Algorithm in Higgs Boson Analysis – Daniel Qenani Lightning Talk
- Quantum Algorithm in Detector R&D for HL-LHC/ATLAS Inner Tracker Stave Core – Argyris Manes Lightning Talk
- Grover's Algorithm Applied to BSM Physics Search in Higgs Boson Decays to 4 leptons Anthony Armenakas (Harvard)
- Quantum Entanglement in Higgs Boson Decays to 4 leptons at LHC/ATLAS

Quantum Entanglement in Higgs Boson Decays to 4 Leptons: Status

- OKB, Yale-WL
- 4-April-2022
- Wright Lab Quantum Sensing Workshop
 - Yale Quantum Week

Overview

Proposed Higgs boson decay to four leptons (electrons and muons)

$$H \rightarrow ZZ^* \rightarrow 4l$$

Reminder - spin and parity assignments

$$0^+ \to 1^- + 1^- \to 4 \times \frac{1}{2}$$

make use of all final states:

$$2e2\mu$$
, $4e$, 4μ

Possible states of vector bosons emitted in decay

Three possible polarization states for the two vector bosons: right-handed longitudinal and left-handed longitudinal (60%; shown) and transverse (40%; not shown)

Consider the case of RR and LL handedness

$$\psi = \frac{1}{\sqrt{2}}[(R_1)(R_2) + (L_1)(L_2)]$$

- > Both vector bosons linearly polarized
- > Two separately distinct possibilities
- > This correlation used to test Bell's Inequality
- > Their total angular momentum sum to zero, as they must

$H \rightarrow ZZ^* \rightarrow 4I$ MC analysis

A. Aspect results

FIG. 3. Correlation of polarizations as a function of the relative angle of the polarimeters. The indicated errors are ± 2 standard deviations. The dotted curve is not a fit to the data, but quantum mechanical predictions for the actual experiment. For ideal polarizers, the curve would reach the values ± 1 .

Summary

- Testing Bell's Inequality with Higgs decays
 - Polarization analysis initial results
 - Bell's inequality initial results
 - Applications (future presentation)

Application

- H \rightarrow Z*Z_d--> 4l for Z1-mass = Z2-mass (60.0-65.0 GeV)
- \cdot H \rightarrow Zq
- Di-Higgs → 8 leptons?

• . . .

Backup

MC16

m_{Z1} and m_{Z2} overlap region

combined
mass
119 < m < 131
GeV

Run2 actual collision data

Higgs boson mass region excluded

signal region excluded "blind analysis"

Alain Aspect experiment for comparison

Atomic physics

Energy levels in Calcium showing states used in production of entangled pairs of photons

Aspect paper

FIG. 2. Experimental setup. Two polarimeters I and II, in orientations \bar{a} and \bar{b} , perform true dichotomic measurements of linear polarization on photons ν_1 and ν_2 . Each polarimeter is rotatable around the axis of the incident beam. The counting electronics monitors the singles and the coincidences.

decay can pass through either of the two intermediate J= 1 states, as illustrated.

Taken from The Quantum Challenge, Greenstein and Zajonc, Jones and Bartlett Publishers (2006)₁₇